Zinc-induced Plant Resilience Against Abiotic Stresses: Physiological, Biochemical and Molecular Insights – A Review
DOI:
https://doi.org/10.38211/PJA.2025.02.120Keywords:
Salinity, Drought, Heavy metals, Zn nutrition, Stress resilience, Physiological responseAbstract
The global climate change, rapid urbanization, and industrialization have led to an increase in abiotic stress conditions, such as salinity, drought, heavy metal, and heat stress. These stresses are considerably affecting plant physiological, biochemical, and molecular functioning. The application of micronutrients is a significant part of a balanced plant nutrition management system to provide plants with stress tolerance. Zinc (Zn) is an important micronutrient essential for crop resilience against abiotic stresses by modulating physio biochemical and molecular mechanisms. Zinc nutrition improves antioxidant activity, cell membrane stability, stomatal conductance, plant water relations, and water and nutrient acquisition, thereby improving overall plant performance. Moreover, Zn reduces heavy metal uptake, improves the expression of stress-responsive genes and proteins, and protects the photosynthetic apparatus in plants facing abiotic stress conditions. Therefore, to gain deeper insights into the potential roles of Zn nutrition in plants under stress conditions, the present review discusses the key underlying mechanisms through which Zn enhances stress tolerance in plants. Further, this review explores the contemporary approach of using Zn-based nanofertilizers as an emerging strategy in plant Zn nutrition to combat abiotic stresses. Recent studies highlighting the effectiveness of Zn nanofertilizers in mitigating the adverse effects of stress conditions are also discussed. The current review aims to address knowledge gaps on the potential benefits of Zn in enhancing plant stress resilience.
References
Abbas M, Murtaza G, Owens G, Khursheed MM, Hussain T. 2025. Interactive effects of zinc oxide nanoparticles and phosphorus on wheat (Triticum aestivum L.) grown under salt‐affected soil conditions. Journal of Plant Nutrition and Soil Science 188(1): 139–150. DOI: https://doi.org/10.1002/jpln.202400136
Abdeen SA, Hefni HH, Mady AH. 2023. Foliar application of chitosan zinc oxide nanoparticles on wheat productivity and water use efficiency under deficit irrigation water. Journal of Central European Agriculture 24(2): 476–490. DOI: https://doi.org/10.5513/JCEA01/24.2.3639
Abdelrady WA, Ma Z, Elshawy EE, Wang L, Askri SMH, Ibrahim Z, Dennis E, Kanwal F, Zeng F, Shamsi IH. 2024. Physiological and biochemical mechanisms of salt tolerance in barley under salinity stress. Plant Stress 11: 100403. DOI: https://doi.org/10.1016/j.stress.2024.100403
Adrees M, Khan ZS, Hafeez M, Rizwan M, Hussain K, Asrar M, Alyemeni MN, Wijaya L, Ali S. 2021. Foliar exposure of zinc oxide nanoparticles improved the growth of wheat (Triticum aestivum L.) and decreased cadmium concentration in grains under simultaneous Cd and water deficient stress. Ecotoxicology and Environmental Safety 208: 111627. DOI: https://doi.org/10.1016/j.ecoenv.2020.111627
Ahanger MA, Mir RA, Alyemeni MN, Ahmad P. 2020. Combined effects of brassinosteroid and kinetin mitigates salinity stress in tomato through the modulation of antioxidant and osmolyte metabolism. Plant Physiology and Biochemistry 147: 31–42. DOI: https://doi.org/10.1016/j.plaphy.2019.12.007
Ahmad A, Aslam Z, Naz M, Hussain S, Javed T, Aslam S, Raza A, Ali HM, Siddiqui MH, Salem MZM, Hano C, Shabbir R, Ahmar S, Saeed T, Jamal MA. 2021. Exogenous salicylic acid-induced drought stress tolerance in wheat (Triticum aestivum L.) grown under hydroponic culture. PloS One 16(12): e0260556. DOI: https://doi.org/10.1371/journal.pone.0260556
Ahmad W, Zou Z, Awais M, Munsif F, Khan A, Nepal J, Ahmad M, Akbar S, Ahmad I, Khan MS, Qamar Z, Khan H. 2023. Seed-primed and foliar oxozinc nanofiber application increased wheat production and Zn biofortification in calcareous-alkaline soil. Agronomy 13(2): 400. DOI: https://doi.org/10.3390/agronomy13020400
Ahmed M, Marrez DA, Rizk R, Zedan M, Abdul-Hamid D, Decsi K, Kovács GP, Tóth Z. 2024. The influence of zinc oxide nanoparticles and salt stress on the morphological and some biochemical characteristics of Solanum lycopersicum L. plants. Plants 13(10): 1418. DOI: https://doi.org/10.3390/plants13101418
Ahsan M, Radicetti E, Mancinelli R, Ali HM, Younis A, Sajid M, Manan A, Ali S, Valipour M, Zulfiqar H. 2025. Alleviation of cadmium stress and improved growth performance of periwinkle (Catharanthus roseus L.) by foliar application of zinc oxide nanoparticles. South African Journal of Botany 176: 129–140. DOI: https://doi.org/10.1016/j.sajb.2024.10.057
Aizaz M, Ullah R, Ullah T, Sami R, Aljabri M, Althaqafi MM, Al-Farga A, Qari SH. 2024. Insights into physiological and biochemical responses of Zea mays L. under salinity stress. Emirates Journal of Food and Agriculture 36: 1–13. DOI: https://doi.org/10.3897/ejfa.2024.127665
Alhammad BA, Ahmad A, Seleiman MF. 2023. Nano-hydroxyapatite and ZnO-NPs mitigate Pb stress in maize. Agronomy 13(4): 1174. DOI: https://doi.org/10.3390/agronomy13041174
Amiri A, Baninasab B, Ghobadi C, Khoshgoftarmanesh AH. 2016. Zinc soil application enhances photosynthetic capacity and antioxidant enzyme activities in almond seedlings affected by salinity stress. Photosynthetica 54: 267–274. DOI: https://doi.org/10.1007/s11099-016-0078-0
Angon P, Tahjib‐Ul‐Arif M, Samin S, Habiba U, Hossain M, Brestič M. 2022. How do plants respond to combined drought and salinity stress?—A systematic review. Plants 11(21) :2884. https://doi.org/10.3390/plants11212884 DOI: https://doi.org/10.3390/plants11212884
Anik T, Mostofa M, Rahman M, Khan M, Ghosh P, Sultana S, Das AK, Hossain MS, Keya SS, Rahman MA, Jahan N, Gupta A, Tran L. 2023. Zn supplementation mitigates drought effects on cotton by improving photosynthetic performance and antioxidant defense mechanisms. Antioxidants 12(4): 854. https://doi.org/10.3390/antiox12040854 DOI: https://doi.org/10.3390/antiox12040854
Azmat A, Tanveer Y, Yasmin H, Hassan MN, Shahzad A, Reddy M, Ahmad A. 2022. Coactive role of zinc oxide nanoparticles and plant growth promoting rhizobacteria for mitigation of synchronized effects of heat and drought stress in wheat plants. Chemosphere 297: 133982. DOI: https://doi.org/10.1016/j.chemosphere.2022.133982
Bagwasi G, Agenbag GA, Swanepoel PA. 2020. Effect of salinity on the germination of wheat and barley in South Africa. Crop, Forage & Turfgrass Management 6(1): e20069. DOI: https://doi.org/10.1002/cft2.20069
Bazihizina N, Taiti C, Marti L, Rodrigo-Moreno A, Spinelli F, Giordano C, Caparrotta S, Gori M, Azzarello E, Mancuso S. 2014. Zn²⁺-induced changes at the root level account for the increased tolerance of acclimated tobacco plants. Journal of Experimental Botany 65(17): 4931–4942. https://doi.org/10.1093/jxb/eru251 DOI: https://doi.org/10.1093/jxb/eru251
Cakmak I, Engels C. 2024. Role of mineral nutrients in photosynthesis and yield formation. In: Mineral nutrition of crops, pp. 141–168. CRC Press. DOI: https://doi.org/10.1201/9781003578468-6
Chaudhry S, Sidhu GPS. 2022. Climate change regulated abiotic stress mechanisms in plants: A comprehensive review. Plant Cell Reports 41(1): 1–31. DOI: https://doi.org/10.1007/s00299-021-02759-5
Cohen I, Zandalinas S, Huck C, Fritschi F, Mittler R. 2020. Meta‐analysis of drought and heat stress combination impact on crop yield and yield components. Physiologia Plantarum 171(1): 66–76. https://doi.org/10.1111/ppl.13203 DOI: https://doi.org/10.1111/ppl.13203
Cui L, Chen Y, Liu J, Zhang Q, Xu L, Yang Z. 2023. Spraying zinc sulfate to reveal the mechanism through the glutathione metabolic pathway regulates the cadmium tolerance of seashore paspalum (Paspalum vaginatum Swartz). Plants 12(10): 1982. DOI: https://doi.org/10.3390/plants12101982
Dutta D, Bhupenchandra I, Dutta S, Dutta P. 2025. Exploring zinc oxide (ZnO) nanofertilizer as a potential tool for innovative agriculture. In: Nanofertilizers for sustainable agriculture: Assessing impacts on health, environment, and economy, pp. 235–257. Springer, Cham. DOI: https://doi.org/10.1007/978-3-031-78649-5_10
El-Hendawy S, Elshafei A, Al-Suhaibani N, Alotabi M, Hassan W, Dewir YH, Abdella K. 2019. Assessment of the salt tolerance of wheat genotypes during the germination stage based on germination ability parameters and associated SSR markers. Journal of Plant Interactions 14(1): 151–163. DOI: https://doi.org/10.1080/17429145.2019.1603406
El-Sharkawy M, Mahmoud E, Abd El-Aziz M, Khalifa T. 2022. Effect of zinc oxide nanoparticles and soil amendments on wheat yield, physiological attributes and soil properties grown in saline–sodic soil. Communications in Soil Science and Plant Analysis 53(17): 2170–2186. DOI: https://doi.org/10.1080/00103624.2022.2070635
Gagné-Bourque F, Bertrand A, Claessens A, Aliferis K, Jabaji S. 2016. Alleviation of drought stress and metabolic changes in timothy (Phleum pratense l.) colonized with Bacillus subtilis b26. Frontiers in Plant Science 7: 584. DOI: https://doi.org/10.3389/fpls.2016.00584
Gommers C. 2020. Keep cool and open up: temperature-induced stomatal opening. Plant Physiology 182(3): 1188–1189. DOI: https://doi.org/10.1104/pp.20.00158
Gu Z, Hu C, Gan Y, Zhou J, Tian G, Gao L. 2024. Role of microbes in alleviating crop drought stress: A review. Plants 13(3): 384. DOI: https://doi.org/10.3390/plants13030384
Haghaninia M, Mashhouri SM, Najafifar A, Soleimani F, Wu QS. 2025. Combined effects of zinc oxide nanoparticles and arbuscular mycorrhizal fungi on soybean yield, oil quality, and biochemical responses under drought stress. Future Foods 11: 100594. DOI: https://doi.org/10.1016/j.fufo.2025.100594
Hassan M, Aamer M, Chattha M, Tang H, Shahzad B, Barbanti L, Nawaz M, Rasheed A, Afzal A, Liu Y, Guo-qin H. 2020. The critical role of zinc in plants facing the drought stress. Agriculture 10(9): 396. https://doi.org/10.3390/agriculture10090396 DOI: https://doi.org/10.3390/agriculture10090396
Hassan MU, Guoqin H, Ahmad N, Khan TA, Nawaz M, Shah AN, Rasheed A, Asseri TA, Ercisli S. 2024. Multifaceted roles of zinc nanoparticles in alleviating heavy metal toxicity in plants: A comprehensive review and future perspectives. Environmental Science and Pollution Research 31: 61356–61376. DOI: https://doi.org/10.1007/s11356-024-35018-7
Hussein MM, Abou-Baker NH. 2018. The contribution of nano-zinc to alleviate salinity stress on cotton plants. Royal Society Open Science 5(8): 171809. DOI: https://doi.org/10.1098/rsos.171809
Iftikhar N, Perveen S, Ali B, Saleem MH, Al-Sadoon MK. 2024. Physiological and biochemical responses of maize (Zea mays l.) cultivars under salinity stress. Turkish Journal of Agriculture and Forestry 48(3): 332–343. DOI: https://doi.org/10.55730/1300-011X.3185
Ishfaq A, Haidri I, Shafqat U, Khan I, Iqbal M, Mahmood F, Hassan MU. 2025. Impact of biogenic zinc oxide nanoparticles on physiological and biochemical attributes of pea (Pisum sativum l.) under drought stress. Physiology and Molecular Biology of Plants 31: 11–26. DOI: https://doi.org/10.1007/s12298-024-01537-3
Islam M, Sandhi A. 2023. Heavy metal and drought stress in plants: the role of microbes—A review. Gesunde Pflanzen 75(4): 695–708. DOI: https://doi.org/10.1007/s10343-022-00762-8
Jafir M, Khan A, Ahmad A, Hussain K, ur Rehman MZ, Nazeer Ahmad SJ, Irfan M, Sabir MA, Khan TH, Zulfiqar U. 2024. Zinc nanoparticles for enhancing plant tolerance to abiotic stress: A bibliometric analysis and review. Journal of Soil Science and Plant Nutrition 24(2): 1704–1719. DOI: https://doi.org/10.1007/s42729-024-01733-w
Jalil S, Nazir MM, Eweda MA, Zulfiqar F, Ahmed T, Noman M, Asad MA, Siddique KH, Jin X. 2024. Zinc oxide application alleviates arsenic-mediated oxidative stress via physio-biochemical mechanism in rice. Environmental Science and Pollution Research 31(23): 34200–34213. DOI: https://doi.org/10.1007/s11356-024-33380-0
Jamali IA, Zia-ul-Hassan, Talpur NA, Arain JA, Solangi AR, Depar N. 2025. Evaluating yield and quality of wheat grains under single and integrated use of chemical and nano zinc fertilizers. Pakistan Journal of Botany 57(5). http://dx.doi.org/10.30848/PJB2025-5(7) DOI: https://doi.org/10.30848/PJB2025-5(7)
Jin R, Wang Y, Liu R, Gou J, Chan Z. 2016. Physiological and metabolic changes of purslane (Portulaca oleracea l.) in response to drought, heat, and combined stresses. Frontiers in Plant Science 6: 1123. https://doi.org/10.3389/fpls.2015.01123 DOI: https://doi.org/10.3389/fpls.2015.01123
Jing Y, Yuanzhe M, Chuangye Z, Yunmei W, Yifan L, Huini D, Fuyong W. 2025. Influence of arbuscular mycorrhizal fungi and zinc oxide nanoparticles on cadmium uptake and accumulation in winter wheat growing in naturally Cd-contaminated soil. Pedosphere. DOI: https://doi.org/10.1016/j.pedsph.2025.01.005
Jorjani S, Karakaş FP. 2024. Physiological and biochemical responses to heavy metals stress in plants. International Journal of Secondary Metabolite 11(1): 169–190. DOI: https://doi.org/10.21448/ijsm.1323494
Kareem HA, Saleem MF, Saleem S, Rather SA, Wani SH, Siddiqui MH, Alamri S, Kumar R, Gaikwad NB, Gou Z, Niu J, Wang Q. 2022. Zinc oxide nanoparticles interplay with physiological and biochemical attributes in terminal heat stress alleviation in mungbean (Vigna radiata l.). Frontiers in Plant Science 13: 842349. DOI: https://doi.org/10.3389/fpls.2022.842349
Kathirvelan P, Vaishnavi S, Manivannan V, Djanaguiraman M, Thiyageshwari S, Parasuraman P, Kalarani MK. 2025. Response of maize (Zea mays L.) to foliar-applied nanoparticles of zinc oxide and manganese oxide under drought stress. Plants 14(5): 732. DOI: https://doi.org/10.3390/plants14050732
Kavian S, Safarzadeh S, Yasrebi J. 2022. Zinc improves growth and antioxidant enzyme activity in Aloe vera plant under salt stress. South African Journal of Botany 147: 1221–1229. DOI: https://doi.org/10.1016/j.sajb.2022.04.011
Khan AR, Azhar W, Fan X, Ulhassan Z, Salam A, Ashraf M, Liu Y, Gan Y. 2023. Efficacy of zinc-based nanoparticles in alleviating the abiotic stress in plants: Current knowledge and future perspectives. Environmental Science and Pollution Research 30(51): 110047–110068. DOI: https://doi.org/10.1007/s11356-023-29993-6
Khan H, Zia-ul-Hassan, Maitlo AA. 2006. Yield and micronutrients content of bread wheat (Triticum aestivum l.) under a multinutrient fertilizer-Hal-Tonic. International Journal of Agriculture and Biology 8,(3): 366-370.
Khand NH, Junejo B, Solangi AR, Aziz T, Zia-ul-hassan. 2023. Nanofertilizers and nanopesticides for sustainable agriculture, food security and environmental quality. In: Nanobiotechnology for Sustainable Food Management, pp.145–162. CRC Press. DOI: https://doi.org/10.1201/9781003514039-7
Khanzada A, Feng K, Wang X, Cai J, Malko M, Samo A, Hossain MN, Jiang D. 2022. Comprehensive evaluation of high‐temperature tolerance induced by heat priming at early growth stages in winter wheat. Physiologia Plantarum 174(4). https://doi.org/10.1111/ppl.13759 DOI: https://doi.org/10.1111/ppl.13759
Kurtinová S, Šebesta M. 2023. Heavy metal stress alleviation in plants by ZnO and TiO2 nanoparticles. In: Nanotechnology in Agriculture and Agroecosystems, pp.347–365. Elsevier. DOI: https://doi.org/10.1016/B978-0-323-99446-0.00001-5
Li Y, Jiang F, Niu L, Wang G, Yin J, Song X, Ottosen CO, Rosenqvist E, Mittler R, Wu Z, Zhou R. 2024. Synergistic regulation at physiological, transcriptional and metabolic levels in tomato plants subjected to a combination of salt and heat stress. The Plant Journal 117(6): 1656–1675. DOI: https://doi.org/10.1111/tpj.16580
Lokupitiya E, Agrawal M, Ahamed T, Mustafa N, Ahmed B, Vathani A, Opatha K, Jaiswal B, Singh S, Seneviratne G, Sirisena DN, Paustian K. 2020. Evaluation of best management practices with greenhouse gas benefits for salt-affected paddy soils in South Asia. APN Science Bulletin. DOI: https://doi.org/10.30852/sb.2020.1042
Manzoor N, Ali L, Al-Huqail AA, Alghanem SMS, Al-Haithloul HAS, Abbas T, Chen G, Huan L, Liu Y, Wang G. 2023. Comparative efficacy of silicon and iron oxide nanoparticles towards improving the plant growth and mitigating arsenic toxicity in wheat (Triticum aestivum L.). Ecotoxicology and Environmental Safety 264: 115382. DOI: https://doi.org/10.1016/j.ecoenv.2023.115382
Mathobo R, Marais D, Steyn J. 2017. The effect of drought stress on yield, leaf gaseous exchange and chlorophyll fluorescence of dry beans (Phaseolus vulgaris L.). Agricultural Water Management 180: 118–125. DOI: https://doi.org/10.1016/j.agwat.2016.11.005
Memon SUR, Zia-ul-hassan, Talpur KH, Jamali IA, Memon SP, Depar N. 2024. Evaluating advance wheat lines for enhanced zinc efficiency and climate resilience. Pakistan Journal of Agriculture 1(1): 1–7. DOI: https://doi.org/10.38211/PJA.2024.01.77
Muhammed S, Al-Joboory W. 2023. The influence of the levels and addition methods of zinc on stimulating some enzymes to resist salinity. IOP Conference Series: Earth and Environmental Science 1252(1): 012060. DOI: https://doi.org/10.1088/1755-1315/1252/1/012060
Mukhtar T, Rehman S, Smith D, Sultan T, Seleiman M, Alsadon A, Amna, Ali S, Chaudhary HJ, Solieman TH, Ibrahim AA, Saad M. 2020. Mitigation of heat stress in Solanum lycopersicum L. by ACC-deaminase and exopolysaccharide producing Bacillus cereus: effects on biochemical profiling. Sustainability 12(6): 2159. DOI: https://doi.org/10.3390/su12062159
Naz RMM, Umar M, Nigar Q, Ali H, Hanif M, Dogar WA, Ahmed M, Muhammad A, Farooq K. 2024. Understanding the impact of zinc and boron applications on growth and yield attributes in potato. Journal of Applied Research in Plant Sciences 5(2): 297–304. DOI: https://doi.org/10.38211/joarps.2024.05.290
Peck AW, McDonald GK. 2010. Adequate zinc nutrition alleviates the adverse effects of heat stress in bread wheat. Plant and Soil 337: 355–374. DOI: https://doi.org/10.1007/s11104-010-0532-x
Pérez-Hernández H, Pérez-Moreno AY, Méndez-López A, Fernández-Luqueño F. 2024. Effect of ZnO nanoparticles during the process of phytoremediation of soil contaminated with As and Pb cultivated with sunflower (Helianthus annuus L.). International Journal of Environmental Research 18(1): 7. DOI: https://doi.org/10.1007/s41742-023-00556-4
Praharaj S, Maitra S, Nath S, Hossain A, Sagar L, Pattanayak S, Banerjee M, Pramanick B, Shankar T, Pal A. 2023. Role of zinc in tolerance against different environmental stress. In: Biology and Biotechnology of Environmental Stress Tolerance in Plants, pp: 197–213. Apple Academic Press. DOI: https://doi.org/10.1201/9781003346203-7
Qiao M, Hong C, Jiao Y, Hou S, Gao H. 2024. Impacts of drought on photosynthesis in major food crops and the related mechanisms of plant responses to drought. Plants 13(13): 1808. DOI: https://doi.org/10.3390/plants13131808
Qu Y, Mueller-Cajar O, Yamori W. 2023. Improving plant heat tolerance through modification of Rubisco activase in C3 plants to secure crop yield and food security in a future warming world. Journal of Experimental Botany 74(2): 591–599. DOI: https://doi.org/10.1093/jxb/erac340
Rani S, Kumari N, Sharma V. 2025. Zinc oxide nanoparticles improve photosynthesis by modulating antioxidant system and psbA gene expression under arsenic stress in different cultivars of Vigna radiata. BioNanoScience 15(2): 242. DOI: https://doi.org/10.1007/s12668-025-01858-x
Raza MAS, Muhammad F, Farooq M, Aslam MU, Akhter N, Toleikienė M, Binobead MA, Ali MA, Rizwan M, Iqbal R. 2025. ZnO-nanoparticles and stage-based drought tolerance in wheat (Triticum aestivum L.): Effect on morpho-physiology, nutrients uptake, grain yield and quality. Scientific Reports 15(1): 5309. DOI: https://doi.org/10.1038/s41598-025-89718-2
Sadati SYR, Godehkahriz SJ, Ebadi A, Sedghi M. 2022. Zinc oxide nanoparticles enhance drought tolerance in wheat via physio-biochemical changes and stress genes expression. Iranian Journal of Biotechnology 20(1): e3027.
Safari Zargani H, Nadian H, Rang Zan N, Moradi Talavat M. 2021. Effect of different levels of salinity, zinc, and sulfur inoculated with thiobacillus on rapeseed growth parameters and some nutrient uptake (Brassica napus L.). Iranian Journal of Soil Research 34(4): 529–544.
Sahil KR, Patra A, Mehta S, Abdelmotelb KF, Lavale SA, Chaudhary M, Aggarwal SK, Chattopadhyay A. 2021. Expression and regulation of stress-responsive genes in plants under harsh environmental conditions. In: Harsh Environment and Plant Resilience: Molecular and Functional Aspects, pp: 25–44. DOI: https://doi.org/10.1007/978-3-030-65912-7_2
Sardar H, Ramzan MA, Naz S, Ali S, Ejaz S, Ahmad R, Altaf MA. 2023. Exogenous application of melatonin improves the growth and productivity of two broccoli (Brassica oleracea L.) cultivars under salt stress. Journal of Plant Growth Regulation 42(8): 5152–5166. DOI: https://doi.org/10.1007/s00344-023-10946-9
Sarwar M, Saleem MF, Ali B, Saleem MH, Rizwan M, Usman K, Keblawy AE, Ali A, Afzal M, Sheteiwy MS, Ali S. 2022. Application of potassium, zinc and boron as potential plant growth modulators in Gossypium hirsutum L. under heat stress. Turkish Journal of Agriculture and Forestry 46(4): 567–584. DOI: https://doi.org/10.55730/1300-011X.3026
Sarwar M, Saleem MF, Ullah N, Ali A, Collins B, Shahid M, Munir MK, Chung SM, Kumar M. 2023. Superior leaf physiological performance contributes to sustaining the final yield of cotton (Gossypium hirsutum L.) genotypes under terminal heat stress. Physiology and Molecular Biology of Plants 29(5): 739–753. DOI: https://doi.org/10.1007/s12298-023-01322-8
Shahri ZB, Zamani GR, Sayyari-Zahan MH. 2012. Effect of drought stress and zinc sulfate on the yield and some physiological characteristics of sunflower (Helianthus annuus L.). Advances in Environmental Biology 6(2): 518–526.
Shao J, Tang W, Huang K, Ding C, Wang H, Zhang W, Li R, Aamer M, Hassan MU, Elnour RO, Hashem M. 2023. How does zinc improve salinity tolerance? Mechanisms and future prospects. Plants 12(18): 3207. DOI: https://doi.org/10.3390/plants12183207
Sharma S, Raja V, Bhat AH, Kumar N, Alsahli AA, Ahmad P. 2025. Innovative strategies for alleviating chromium toxicity in tomato plants using melatonin functionalized zinc oxide nanoparticles. Scientia Horticulturae 341: 113930. DOI: https://doi.org/10.1016/j.scienta.2024.113930
Shemi R, Wang R, Gheith ESM, Hussain HA, Hussain S, Irfan M, Cholidah L, Zhang K, Zhang S, Wang L. 2021. Effects of salicylic acid, zinc and glycine betaine on morpho-physiological growth and yield of maize under drought stress. Scientific Reports 11(1): 3195. DOI: https://doi.org/10.1038/s41598-021-82264-7
Singh A, Sengar RS, Shahi UP, Rajput VD, Minkina T, Ghazaryan KA. 2022. Prominent effects of zinc oxide nanoparticles on roots of rice (Oryza sativa L.) grown under salinity stress. Stresses 3(1): 33–46. DOI: https://doi.org/10.3390/stresses3010004
Singh D, Sharma NL, Singh D, Siddiqui MH, Sarkar SK, Rathore A, Prasad SK, Gaafar ARZ, Hussain S. 2024. Zinc oxide nanoparticles alleviate chromium-induced oxidative stress by modulating physio-biochemical aspects and organic acids in chickpea (Cicer arietinum L.). Plant Physiology and Biochemistry 206: 108166. DOI: https://doi.org/10.1016/j.plaphy.2023.108166
Stanković J, Janković S, Lang I, Vujičić M, Sabovljević M, Sabovljević A. 2021. The toxic metal stress in two mosses of different growth forms under axenic and controlled conditions. Botanica Serbica 45(1): 31–47. https://doi.org/10.2298/botserb2101031s DOI: https://doi.org/10.2298/BOTSERB2101031S
Thakur S, Asthir B, Kaur G, Kalia A, Sharma A. 2021. Zinc oxide and titanium dioxide nanoparticles influence heat stress tolerance mediated by antioxidant defense system in wheat. Cereal Research Communications 50: 385–396. DOI: https://doi.org/10.1007/s42976-021-00190-w
Tian W, Zhang M, Zong D, Li W, Li X, Wang Z, Zhang Y, Niu Y, Xiang P. 2023. Are high-risk heavy metal(loid)s contaminated vegetables detrimental to human health? A study of incorporating bioaccessibility and toxicity into accurate health risk assessment. Science of the Total Environment 897: 165514. DOI: https://doi.org/10.1016/j.scitotenv.2023.165514
Tolay I. 2021. The impact of different zinc (Zn) levels on growth and nutrient uptake of basil (Ocimum basilicum L.) grown under salinity stress. PLoS One 16(2): e0246493. DOI: https://doi.org/10.1371/journal.pone.0246493
Türkoğlu A, Haliloğlu K, Ekinci M, Turan M, Yıldırım E, Öztürk H, Stansluos AAL, Nadaroğlu H, Piekutowska M, Niedbała G. 2024. Zinc oxide nanoparticles: An influential element in alleviating salt stress in quinoa (Chenopodium quinoa L. cv Atlas). Agronomy 14(7): 1462. https://doi.org/10.3390/agronomy14071462 DOI: https://doi.org/10.3390/agronomy14071462
Uddin S, Gull S, Mahmood U. 2024. Genome-wide identification, characterization and expression analysis of csc3h gene family in cucumber (Cucumis sativus L.) under various abiotic stresses. bioRvix. https://doi.org/10.1101/2024.12.23.630068 DOI: https://doi.org/10.1101/2024.12.23.630068
Ullah A, Romdhane L, Rehman A, Farooq M. 2019. Adequate zinc nutrition improves the tolerance against drought and heat stresses in chickpea. Plant Physiology and Biochemistry 143: 11–18. DOI: https://doi.org/10.1016/j.plaphy.2019.08.020
Verma V, Ravindran P, Kumar PP. 2016. Plant hormone-mediated regulation of stress responses. BMC Plant Biology 16: 1–10. DOI: https://doi.org/10.1186/s12870-016-0771-y
Wang R, Sun L, Zhang P, Wan J, Wang Y, Xu J. 2023. Zinc oxide nanoparticles alleviate cadmium stress by modulating plant metabolism and decreasing cadmium accumulation in Perilla frutescens. Plant Growth Regulation 100(1): 85–96. DOI: https://doi.org/10.1007/s10725-022-00938-2
Wang Z, Wang S, Ma T, Liang Y, Huo Z, Yang F. 2023. Synthesis of zinc oxide nanoparticles and their applications in enhancing plant stress resistance: A review. Agronomy 13(12): 3060. DOI: https://doi.org/10.3390/agronomy13123060
Wu S, Hu C, Tan Q, Li L, Shi K, Zheng Y, Sun X. 2015. Drought stress tolerance mediated by zinc-induced antioxidative defense and osmotic adjustment in cotton (Gossypium hirsutum). Acta Physiologiae Plantarum 37: 1–9. DOI: https://doi.org/10.1007/s11738-015-1919-3
Yaghoubian I, Ghassemi S, Nazari M, Raei Y, Smith DL. 2021. Response of physiological traits, antioxidant enzymes and nutrient uptake of soybean to Azotobacter chroococcum and zinc sulfate under salinity. South African Journal of Botany 143: 42–51. DOI: https://doi.org/10.1016/j.sajb.2021.07.037
Yuan Z, Cai S, Yan C, Rao S, Cheng S, Xu F, Liu X. 2024. Research progress on the physiological mechanism by which selenium alleviates heavy metal stress in plants: A review. Agronomy 14(8): 1787. DOI: https://doi.org/10.3390/agronomy14081787
Zafar S, Perveen S, Kamran Khan M, Shaheen MR, Hussain R, Sarwar N, Rashid S, Nafees M, Farid G, Alamri S, Shah AA, Siddiqui MH. 2022. Effect of zinc nanoparticles seed priming and foliar application on the growth and physio-biochemical indices of spinach (Spinacia oleracea L.) under salt stress. PLoS One 17(2): e0263194. DOI: https://doi.org/10.1371/journal.pone.0263194
Zahra N, Hafeez MB, Ghaffar A, Kausar A, Al Zeidi M, Siddique KH, Farooq M. 2023. Plant photosynthesis under heat stress: Effects and management. Environmental and Experimental Botany 206: 105178. DOI: https://doi.org/10.1016/j.envexpbot.2022.105178
Zhang Q, Wang C. 2020. Natural and human factors affect the distribution of soil heavy metal pollution: a review. Water, Air, & Soil Pollution 231: 1–13. DOI: https://doi.org/10.1007/s11270-020-04728-2
Zhang Q, Ying Y, Ping J. 2022. Recent advances in plant nanoscience. Advanced Science 9(2): 2103414. DOI: https://doi.org/10.1002/advs.202103414
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Inzamam Ali Jamali, Zia-ul-hassan

This work is licensed under a Creative Commons Attribution 4.0 International License.