Impact of Climate Change on Agriculture & Vice Versa: A Review
DOI:
https://doi.org/10.38211/jqaas.2023.3.31Keywords:
climate change, Agriculture, food security, greenhouse gas emission land use change, resource utilization, climate smart agricultureAbstract
The article tackles the intricate relationship between agriculture and climate change, shedding light on the sector's vulnerability to the issue and its significant contribution to it. It not only underlines the simultaneity of the problem of climate change adaptation in agriculture but also highlight the need of greenhouse gas reductions. Climate change disrupts agricultural practices through extreme weather events like droughts, flood and unpredictable rainfall patterns. Climate changes threaten agricultural output and food security, economic hardship and social unrest. Climate change isolates crops production hence resulting in low yields, economic losses, and changing food prices. Cattle, rice growth, fertilizer use and residue burning are principal greenhouse gas contributors of agriculture. When carving virgin forests for agricultural purposes, the ancient carbon is released and climatic patterns are disrupted, greatly exacerbating the problem. These agricultural practices include deforestation, utilization of fossil fuel, and intensive use of water. Mitigation in climate change require sustainable agricultural practices that reduced emission and improve soil health. We need to adapt agricultural practices to be more resilient in the face of climate change while also reducing agricultures contribution to the problem. The complex interplay between climate change and agriculture requires a holistic approach that integrates mitigation and adaptation strategies at local, national and global scale. Efforts to enhance resilience, promote sustainable practices and support equitable adaptation measures are essential to safeguarding the future of agriculture in a changing climate
References
Abid, M., Scheffran, J., Schneider, U. A., & Elahi, E. (2019). Farmer perceptions of climate change observed trends, and adaptation of agriculture in Pakistan. Environmental Management, 63, 110–123. DOI: https://doi.org/10.1007/s00267-018-1113-7
Abu-Zaitoun, S. Y., Chandrasekhar, K., Assili, S., Shtaya, M. J., Jamous, R. M., Mallah, O. B., ... & Ben-David, R. (2018). Unlocking the genetic diversity within a Middle-East panel of durum wheat landraces for adaptation to semi-arid climate. Agronomy, 8(10), 233. DOI: https://doi.org/10.3390/agronomy8100233
Adhikari, P., Araya, H., Aruna, G., Balamatti, A., Banerjee, S., Baskaran, P., ... & Verma, A. (2018). System of crop intensification for more productive, resource-conserving, climate-resilient, and sustainable agriculture: Experience with diverse crops in varying agroecologies. International journal of agricultural sustainability, 16(1), 1-28. DOI: https://doi.org/10.1080/14735903.2017.1402504
Agrimonti, C., Lauro, M., & Visioli, G. (2021). Smart agriculture for food quality: facing climate change in the 21st century. Critical reviews in food science and nutrition, 61(6), 971-981. DOI: https://doi.org/10.1080/10408398.2020.1749555
Amadou, T., Falconnier, G. N., Mamoutou, K., Georges, S., Alassane, B. A., François, A., ... & Benjamin, S. (2022). Farmers’ perception and adaptation strategies to climate change in Central Mali. Weather, Climate, and Society, 14(1), 95-112. DOI: https://doi.org/10.1175/WCAS-D-21-0003.1
Anderson, R., Bayer, P. E., & Edwards, D. (2020). Climate change and the need for agricultural adaptation. Current opinion in plant biology, 56, 197-202. DOI: https://doi.org/10.1016/j.pbi.2019.12.006
Angom, J., Viswanathan, P. K., & Ramesh, M. V. (2021). The dynamics of climate change adaptation in India: a review of climate smart agricultural practices among smallholder farmers in Aravalli district, Gujarat, India. Current Research in Environmental Sustainability, 3, 100039. DOI: https://doi.org/10.1016/j.crsust.2021.100039
Arbuckle, J. G., Morton, L. W., & Hobbs, J. (2013). Farmer beliefs and concerns about climate change and attitudes toward adaptation and mitigation: Evidence from Iowa. climatic change, 118, 551-563. DOI: https://doi.org/10.1007/s10584-013-0700-0
Aryal, J. P., Sapkota, T. B., Khurana, R., Khatri-Chhetri, A., Rahut, D. B., & Jat, M. L. (2020). Climate change and agriculture in South Asia: Adaptation options in smallholder production systems. Environment, Development and Sustainability, 22(6), 5045-5075. DOI: https://doi.org/10.1007/s10668-019-00414-4
Aryal, J. P., Sapkota, T. B., Rahut, D. B., & Jat, M. L. (2020). Agricultural sustainability under emerging climatic variability: the role of climate-smart agriculture and relevant policies in India. International Journal of Innovation and Sustainable Development, 14(2), 219-245. DOI: https://doi.org/10.1504/IJISD.2020.106243
Baker, J. C. (2021). Planting trees to combat drought. Nature Geoscience, 14(7), 458-459. DOI: https://doi.org/10.1038/s41561-021-00787-0
Bala, K., Sood, A. K., Pathania, V. S., & Thakur, S. (2018). Effect of plant nutrition in insect pest management: A review. Journal of Pharmacognosy and Phytochemistry, 7(4),2737-2742.
Beillouin, D., Ben-Ari, T., & Makowski, D. (2019). Evidence map of crop diversification strategies at the global scale. Environmental Research Letters, 14(12), 123001. DOI: https://doi.org/10.1088/1748-9326/ab4449
Bisht, D. S., Bhatia, V., & Bhattacharya, R. (2019, December). Improving plant-resistance to insect-pests and pathogens: The new opportunities through targeted genome editing. In Seminars in cell & developmental biology (Vol. 96, pp. 65-76). Academic Press. DOI: https://doi.org/10.1016/j.semcdb.2019.04.008
Brandt, P., Kvakić, M., Butterbach-Bahl, K., & Rufino, M. C. (2017). How to target climate-smart agriculture? Concept and application of the consensus-driven decision support framework “targetCSA”. Agricultural Systems, 151, 234-245. DOI: https://doi.org/10.1016/j.agsy.2015.12.011
Castex, V., Beniston, M., Calanca, P., Fleury, D., & Moreau, J. (2018). Pest management under climate change: The importance of understanding tritrophic relations. Science of the Total Environment, 616, 397-407. DOI: https://doi.org/10.1016/j.scitotenv.2017.11.027
Chen, P. Y., Huang, S. J., Yu, C. Y., Chiang, P. C., Liu, T. M., & Tung, C. P. (2017). Study on the Climate Adaption Planning for an Industrial Company with Regional Risk of the Water Supply System—A Case in Taiwan. Water, 9(9), 682. DOI: https://doi.org/10.3390/w9090682
Chen, X., Wang, L., Niu, Z., Zhang, M., & Li, J. (2020). The effects of projected climate change and extreme climate on maize and rice in the Yangtze River Basin, China. Agricultural and Forest Meteorology, 282, 107867. DOI: https://doi.org/10.1016/j.agrformet.2019.107867
Cloy, J. M., Rees, R. M., Smith, K. A., Goulding, K. W. T., Smith, P., Waterhouse, A., & Chadwick, D. (2012). Impacts of agriculture upon greenhouse gas budgets. Environmental Impacts of Modern Agriculture, 34, 57-82. DOI: https://doi.org/10.1039/9781849734974-00057
Das, M. K. (2021). Determinants of Adaptation Strategies of Agricultural Farmers to Climate Change Vulnerability in Odisha. Asian Journal of Agricultural Extension, Economics & Sociology, 39(9), 167-179. DOI: https://doi.org/10.9734/ajaees/2021/v39i930654
Defries, R., & Rosenzweig, C. (2010). Toward a whole-landscape approach for sustainable land use in the tropics. Proceedings of the National Academy of Sciences, 107(46), 19627-19632. DOI: https://doi.org/10.1073/pnas.1011163107
Devi, P., Jha, U. C., Prakash, V., Kumar, S., Parida, S. K., Paul, P. J., ... & Nayyar, H. (2022). Response of physiological, reproductive function and yield traits in cultivated chickpea (Cicer arietinum L.) under heat stress. Frontiers in Plant Science, 13, 880519. DOI: https://doi.org/10.3389/fpls.2022.880519
Donatelli, M., Magarey, R. D., Bregaglio, S., Willocquet, L., Whish, J. P., & Savary, S. (2017). Modelling the impacts of pests and diseases on agricultural systems. Agricultural systems, 155, 213-224. DOI: https://doi.org/10.1016/j.agsy.2017.01.019
Duman, A. C., & Güler, Ö. (2020). Economic analysis of grid-connected residential rooftop PV systems in Turkey. Renewable Energy, 148, 697-711. DOI: https://doi.org/10.1016/j.renene.2019.10.157
Dupraz, C., Marrou, H., Talbot, G., Dufour, L., Nogier, A., & Ferard, Y. (2011). Combining solar photovoltaic panels and food crops for optimising land use: Towards new agrivoltaic schemes. Renewable energy, 36(10), 2725-2732. DOI: https://doi.org/10.1016/j.renene.2011.03.005
Eck, M. A., Murray, A. R., Ward, A. R., & Konrad, C. E. (2020). Influence of growing season temperature and precipitation anomalies on crop yield in the southeastern United States. Agricultural and Forest Meteorology, 291, 108053. DOI: https://doi.org/10.1016/j.agrformet.2020.108053
Estrada, F., & Botzen, W. W. (2021). Economic impacts and risks of climate change under failure and success of the Paris Agreement. Annals of the New York Academy of Sciences, 1504(1), 95-115. DOI: https://doi.org/10.1111/nyas.14652
Eswar, D., Karuppusamy, R., & Chellamuthu, S. (2021). Drivers of soil salinity and their correlation with climate change. Current Opinion in Environmental Sustainability, 50, 310-318. DOI: https://doi.org/10.1016/j.cosust.2020.10.015
Furlong, M. J., & Zalucki, M. P. (2017). Climate change and biological control: the consequences of increasing temperatures on host–parasitoid interactions. Current opinion in insect science, 20, 39-44. DOI: https://doi.org/10.1016/j.cois.2017.03.006
Fusco, G., Melgiovanni, M., Porrini, D., & Ricciardo, T. M. (2020). How to improve the diffusion of climate-smart agriculture: What the literature tells us. Sustainability, 12(12), 5168. DOI: https://doi.org/10.3390/su12125168
Georgilas, I., Moulogianni, C., Bournaris, T., Vlontzos, G., & Manos, B. (2021). Socioeconomic impact of climate change in rural areas of Greece using a multicriteria decision-making model. Agronomy, 11(9), 1779. DOI: https://doi.org/10.3390/agronomy11091779
Goh, K. M. (2011). Greater mitigation of climate change by organic than conventional agriculture: a review. Biological Agriculture & Horticulture, 27(2), 205-229. DOI: https://doi.org/10.1080/01448765.2011.9756648
Gorjian, S., Bousi, E., Özdemir, Ö. E., Trommsdorff, M., Kumar, N. M., Anand, A., ... & Chopra, S. S. (2022). Progress and challenges of crop production and electricity generation in agrivoltaic systems using semi-transparent photovoltaic technology. Renewable and Sustainable Energy Reviews, 158, 112126. DOI: https://doi.org/10.1016/j.rser.2022.112126
Gorjian, S., Zadeh, B. N., Eltrop, L., Shamshiri, R. R., & Amanlou, Y. (2019). Solar photovoltaic power generation in Iran: Development, policies, and barriers. Renewable and Sustainable Energy Reviews, 106, 110-123. DOI: https://doi.org/10.1016/j.rser.2019.02.025
Gulzar, M., Abbas, G., & Waqas, M. (2020, March). Climate smart agriculture: a survey and taxonomy. In 2020 International conference on emerging trends in smart technologies (ICETST) (pp. 1-6). IEEE. DOI: https://doi.org/10.1109/ICETST49965.2020.9080695
Gurgel, A. C., Reilly, J., & Blanc, E. (2021). Challenges in simulating economic effects of climate change on global agricultural markets. Climatic Change, 166(3), 29. DOI: https://doi.org/10.1007/s10584-021-03119-8
Han, M., & Zhu, B. (2020). Changes in soil greenhouse gas fluxes by land use change from primary forest. Global Change Biology, 26(4), 2656-2667. DOI: https://doi.org/10.1111/gcb.14993
Hannah, L., Ikegami, M., Hole, D. G., Seo, C., Butchart, S. H., Peterson, A. T., & Roehrdanz, P. R. (2013). Global climate change adaptation priorities for biodiversity and food security. PLoS one, 8(8), e72590. DOI: https://doi.org/10.1371/journal.pone.0072590
Harvey, C. A., Chacon, M., Donatti, C. I., Garen, E., Hannah, L., Andrade, A., ... & Wollenberg, E. (2014). Climate‐smart landscapes: opportunities and challenges for integrating adaptation and mitigation in tropical agriculture. Conservation Letters, 7(2), 77-90.Harvey, C. A., Saborio-Rodríguez, M., Martinez-Rodríguez, M. R., Viguera, B., Chain-Guadarrama, A., Vignola, R., & Alpizar, F. (2018). Climate change impacts and adaptation among smallholder farmers in Central America. Agriculture & Food Security, 7(1), 1–20. DOI: https://doi.org/10.1186/s40066-018-0209-x
Howden, S. M., Soussana, J.-F., Tubiello, F. N., Chhetri, N., Dunlop, M., & Meinke, H. (2007). Adapting agriculture to climate change. Proceedings of the National Academy of Sciences, 104(50), 19691–19696. DOI: https://doi.org/10.1073/pnas.0701890104
Huo, Y., Wang, J., Guo, X., & Xu, Y. (2022). The collaboration mechanism of agricultural Product supply chain dominated by farmer cooperatives. Sustainability, 14(10), 5824. DOI: https://doi.org/10.3390/su14105824
Iizumi, T., Shen, Z., Furuya, J., Koizumi, T., Furuhashi, G., Kim, W., & Nishimori, M. (2020). Climate change adaptation cost and residual damage to global crop production. Climate Research, 80(3), 203-218. DOI: https://doi.org/10.3354/cr01605
Imran, M. A., Ali, A., Ashfaq, M., Hassan, S., Culas, R., & Ma, C. (2018). Impact of Climate Smart Agriculture (CSA) practices on cotton production and livelihood of farmers in Punjab, Pakistan. Sustainability, 10(6), 2101. DOI: https://doi.org/10.3390/su10062101
Kanter, D. R., Ogle, S. M., & Winiwarter, W. (2020). Building on Paris: integrating nitrous oxide mitigation into future climate policy. Current Opinion in Environmental Sustainability, 47, 7-12. DOI: https://doi.org/10.1016/j.cosust.2020.04.005
Crentsil, A. O., & Karbo, R. T. V. (2021). Climate-Smart Agriculture (CSA) Adaptation Strategies of Farmers against Climate Change in Lawra Municipality, Upper West Region, Ghana. Journal of Scientific Research and Reports, 27(2), 10-19. DOI: https://doi.org/10.9734/jsrr/2021/v27i230355
Karki, S., Burton, P., & Mackey, B. (2020). The experiences and perceptions of farmers about the impacts of climate change and variability on crop production: a review. Climate and development, 12(1), 80-95. DOI: https://doi.org/10.1080/17565529.2019.1603096
Katel, S., raj Mandal, H., Koirala, S., Timsina, S., & Poudel, A. (2022). Climate smart agriculture for food security, adaptation, and migration: a review. Turkish Journal of Agriculture-Food Science and Technology, 10(8), 1558-1564. DOI: https://doi.org/10.24925/turjaf.v10i8.1558-1564.5162
Kendall, A., & Spang, E. S. (2020). The role of industrial ecology in food and agriculture’s adaptation to climate change. Journal of Industrial Ecology, 24(2), 313–317. DOI: https://doi.org/10.1111/jiec.12851
Kremen, C., Iles, A., & Bacon, C. (2012). Diversified farming systems: an agroecological, systems-based alternative to modern industrial agriculture. Ecology and society, 17(4). DOI: https://doi.org/10.5751/ES-05103-170444
Khoa, T. A., Trong, N. M., Phuc, C. H., Nguyen, V., & Dang, D. M. (2021, August). Design of a soil moisture sensor for application in a smart watering system. In 2021 IEEE Sensors Applications Symposium (SAS) (pp. 1-6). IEEE. DOI: https://doi.org/10.1109/SAS51076.2021.9530105
Killi, D., Bussotti, F., Raschi, A., & Haworth, M. (2017). Adaptation to high temperature mitigates the impact of water deficit during combined heat and drought stress in C3 sunflower and C4 maize varieties with contrasting drought tolerance. Physiologia plantarum, 159(2), 130-147. DOI: https://doi.org/10.1111/ppl.12490
Kitetu, G. M., & Ko, J. H. (2020). Climate change on agriculture in 2050: A CGE approach.
Kruseman, G., Bairagi, S., Komarek, A. M., Molero Milan, A., Nedumaran, S., Petsakos, A., ... & Yigezu, Y. A. (2020). CGIAR modeling approaches for resource‐constrained scenarios: II. Models for analyzing socioeconomic factors to improve policy recommendations. Crop Science, 60(2), 568-581. DOI: https://doi.org/10.1002/csc2.20114
Kumar, R., Krishna, B., Sundaram, P. K., Kumawat, N., Jeet, P., & Singh, A. K. (2022). Crop Diversification: An Approach for Productive and Climate‐Resilient Production System. Sustainable agriculture systems and technologies, 63-80. DOI: https://doi.org/10.1002/9781119808565.ch5
De Lima, C. Z., Buzan, J. R., Moore, F. C., Baldos, U. L. C., Huber, M., & Hertel, T. W. (2021). Heat stress on agricultural workers exacerbates crop impacts of climate change. Environmental Research Letters, 16(4), 044020. DOI: https://doi.org/10.1088/1748-9326/abeb9f
Mabe, F. N., Sienso, G., & Donkoh, S. (2014). Determinants of choice of climate change adaptation strategies in northern Ghana. Research in Applied Economics, 6(4), 75. DOI: https://doi.org/10.5296/rae.v6i4.6121
Makate, C. (2019). Effective scaling of climate-smart agriculture innovations in African smallholder agriculture: A review of approaches, policy, and institutional strategy needs. Environmental Science & Policy, 96, 37–51. DOI: https://doi.org/10.1016/j.envsci.2019.01.014
Makuvaro, V., Walker, S., Masere, T. P., & Dimes, J. (2018). Smallholder farmers perceived the effects of climate change on agricultural productivity and adaptation strategies. Journal of Arid Environments, 152, 75–82. DOI: https://doi.org/10.1016/j.jaridenv.2018.01.016
Malesios, C., Jones, N., & Jones, A. (2020). A change-point analysis of food price shocks. Climate risk management, 27, 100208. DOI: https://doi.org/10.1016/j.crm.2019.100208
Malhi, G. S., Kaur, M., & Kaushik, P. (2021). Impact of climate change on agriculture and its mitigation strategies: A review. Sustainability, 13(3), 1318. DOI: https://doi.org/10.3390/su13031318
Manyise, T., & Dentoni, D. (2021). Value chain partnerships and farmer entrepreneurship as balancing ecosystem services: Implications for agri-food systems resilience. Ecosystem Services, 49, 101279. DOI: https://doi.org/10.1016/j.ecoser.2021.101279
Mase, A., Gramig, B., & Prokopy, L. (2017). Climate change beliefs, risk perceptions, and adaptation behavior among Midwestern U.S. crop farmers. Climate Risk Management, 15, 8–17. DOI: https://doi.org/10.1016/j.crm.2016.11.004
Mehra, M., Toensmeier, E., & Frischmann, C. (2023). Multifunctionality of Agricultural Solutions Address Climate Change Mitigation and Adaptation while Helping Achieve the SDGs. DOI: https://doi.org/10.21203/rs.3.rs-2712627/v1
Miller, S., Chua, K., Coggins, J., & Mohtadi, H. (2021). Heat waves, climate change, and economic output. Journal of the European Economic Association, 19(5), 2658-2694. DOI: https://doi.org/10.1093/jeea/jvab009
Mirzabaev, A. (2018). Improving the resilience of central asian agriculture to weather variability and climate change. Climate smart agriculture: building resilience to climate change, 477-495. DOI: https://doi.org/10.1007/978-3-319-61194-5_20
Mulungu, K., Tembo, G., Bett, H., & Ngoma, H. (2021). Climate change and crop yields in Zambia: Historical effects and future projections. Environment, Development and Sustainability, 23, 11859–11880. DOI: https://doi.org/10.1007/s10668-020-01146-6
Myers, S. S., Wessells, K. R., Kloog, I., Zanobetti, A., & Schwartz, J. (2015). Rising atmospheric CO2 increases global threat of zinc deficiency. The Lancet. Global health, 3(10), e639. DOI: https://doi.org/10.1016/S2214-109X(15)00093-5
Negra, C., Vermeulen, S., Barioni, L. G., Mamo, T., Melville, P., & Tadesse, M. (2014). Brazil, Ethiopia, and New Zealand lead the way on climate-smart agriculture. Agriculture & Food Security, 3(1), 19. DOI: https://doi.org/10.1186/s40066-014-0019-8
Nikolaou, G., Neocleous, D., Christou, A., Kitta, E., & Katsoulas, N. (2020). Implementing sustainable irrigation in water-scarce regions under the impact of climate change. Agronomy, 10(8), 1120. DOI: https://doi.org/10.3390/agronomy10081120
Ozdemir, D. (2022). The impact of climate change on agricultural productivity in Asian countries: a heterogeneous panel data approach. Environmental Science and Pollution Research, 1-13. DOI: https://doi.org/10.21203/rs.3.rs-264686/v1
De Pinto, A., Cenacchi, N., Kwon, H. Y., Koo, J., & Dunston, S. (2020). Climate smart agriculture and global food-crop production. PLoS One, 15(4), e0231764. DOI: https://doi.org/10.1371/journal.pone.0231764
Porter, J. R., Howden, M., & Smith, P. (2017). Considering agriculture in IPCC assessments. Nature Climate Change, 7(10), 680–683. DOI: https://doi.org/10.1038/nclimate3404
Prokopy, L. S., Arbuckle, J. G., Barnes, A. P., Haden, V. R., Hogan, A., Niles, M. T., & Tyndall, J. (2015). Farmers and climate change: A cross-national comparison of beliefs and risk perceptions in high-income countries. Environmental Management, 56, 492–504. DOI: https://doi.org/10.1007/s00267-015-0504-2
Qureshi, M. R. N. M., Almuflih, A. S., Sharma, J., Tyagi, M., Singh, S., & Almakayeel, N. (2022). Assessment of the climate-smart agriculture interventions towards the avenues of sustainable production–consumption. Sustainability, 14(14), 8410. DOI: https://doi.org/10.3390/su14148410
Ramborun, V., Facknath, S., & Lalljee, B. (2020). Moving toward sustainable agriculture through a better understanding of farmer perceptions and attitudes to cope with climate change. The Journal of Agricultural Education and Extension, 26(1), 37-57. DOI: https://doi.org/10.1080/1389224X.2019.1690012
Rana, M. M. P., & Piracha, A. (2020). Supplying water to the urban poor: government's roles and challenges of participatory water governance. Cities, 106, 102881. DOI: https://doi.org/10.1016/j.cities.2020.102881
Rasul, G. (2021). A framework for addressing the twin challenges of COVID-19 and climate change for sustainable agriculture and food security in South Asia. Frontiers in Sustainable Food Systems, p. 5, 679037. DOI: https://doi.org/10.3389/fsufs.2021.679037
Rao, Y., Zhou, M., Ou, G., Dai, D., Zhang, L., Zhang, Z., ... & Yang, C. (2018). Integrating ecosystem services value for sustainable land-use management in semi-arid region. Journal of Cleaner Production, 186, 662-672. DOI: https://doi.org/10.1016/j.jclepro.2018.03.119
Renard, D., & Tilman, D. (2019). National food production is stabilized by crop diversity. Nature, 571(7764), 257–260. DOI: https://doi.org/10.1038/s41586-019-1316-y
Rosa-Schleich, J., Loos, J., Mußhoff, O., & Tscharntke, T. (2019). Ecological-economic trade-offs of diversified farming systems–a review. Ecological Economics, 160, 251–263. DOI: https://doi.org/10.1016/j.ecolecon.2019.03.002
Riyadh, Z. A., Rahman, M. A., Saha, S. R., Ahamed, T., & Current, D. (2021). Adaptation of agroforestry as a climate smart agriculture technology in Bangladesh. International Journal of Agricultural Research, Innovation and Technology (IJARIT), 11(1), 49-59. DOI: https://doi.org/10.3329/ijarit.v11i1.54466
Saad, A., & Gamatié, A. (2020). Water management in agriculture: a survey on current challenges and technological solutions. IEEE Access, 8, 38082-38097. DOI: https://doi.org/10.1109/ACCESS.2020.2974977
Sam, K. O., Botchway, V. A., Karbo, N., Essegbey, G. O., Nutsukpo, D. K., & Zougmoré, R. B. (2020). Evaluating the utilisation of Climate-Smart Agriculture (CSA) technologies and practices among smallholder farmers in The Lawra, Jirapa and Nandom districts of Ghana. Ghana Journal of Agricultural Science, 55(2), 122-144. DOI: https://doi.org/10.4314/gjas.v55i2.10
Sardar, A., Kiani, A. K., & Kuslu, Y. (2021). Does adoption of climate-smart agriculture (CSA) practices improve farmers’ crop income? Assessing the determinants and its impacts in Punjab province, Pakistan. Environment, Development and Sustainability, 23, 10119-10140. DOI: https://doi.org/10.1007/s10668-020-01049-6
Sarkar, D., Kar, S. K., Chattopadhyay, A., Rakshit, A., Tripathi, V. K., Dubey, P. K., & Abhilash, P. C. (2020). Low input sustainable agriculture: A viable climate-smart option for boosting food production in a warming world. Ecological Indicators, 115, 106412. DOI: https://doi.org/10.1016/j.ecolind.2020.106412
Scherr, S. J., Shames, S., & Friedman, R. (2012). From climate-smart agriculture to climate-smart landscapes. Agriculture & Food Security, 1, 1-15. DOI: https://doi.org/10.1186/2048-7010-1-12
Schillerberg, T. A., & Tian, D. (2020). Changes of crop failure risks in the United States associated with large-scale climate oscillations in the Atlantic and Pacific Oceans. Environmental Research Letters, 15(6), 064035. DOI: https://doi.org/10.1088/1748-9326/ab82cd
Schoeneberger, M., Bentrup, G., De Gooijer, H., Soolanayakanahally, R., Sauer, T., Brandle, J., ... & Current, D. (2012). Branching out: Agroforestry as a climate change mitigation and adaptation tool for agriculture. Journal of Soil and Water Conservation, 67(5), 128A-136A. DOI: https://doi.org/10.2489/jswc.67.5.128A
Sharma, A., Jain, A., Gupta, P., & Chowdary, V. (2021). Machine Learning Applications for Precision Agriculture: A Comprehensive Review. IEEE Access, 9, 4843–4873. DOI: https://doi.org/10.1109/ACCESS.2020.3048415
Shilomboleni, H. (2022). Political economy challenges for climate smart agriculture in Africa. In Social Innovation and Sustainability Transition (pp. 261-272). Cham: Springer Nature Switzerland. DOI: https://doi.org/10.1007/978-3-031-18560-1_18
Shamsuzzoha, M., Kormoker, T., & Ghosh, R. C. (2018). Implementation of water safety plan considering climatic disaster risk reduction in Bangladesh: A study on Patuakhali Pourashava water supply system. Procedia Engineering, 212, 583–590. DOI: https://doi.org/10.1016/j.proeng.2018.01.075
Skendžić, S., Zovko, M., Živković, I. P., Lešić, V., & Lemić, D. (2021). The impact of climate change on agricultural insect pests. Insects, 12(5), 440. DOI: https://doi.org/10.3390/insects12050440
Smith, P., Haberl, H., Popp, A., Erb, K., Lauk, C., Harper, R., Tubiello, F. N., de Siqueira Pinto, A., Jafari, M., & Sohi, S. (2013). How much land‐based greenhouse gas mitigation can be achieved without compromising food security and environmental goals? Global Change Biology, 19(8), 2285–2302. DOI: https://doi.org/10.1111/gcb.12160
Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., ... & Smith, J. (2008). Greenhouse gas mitigation in agriculture. Philosophical transactions of the royal Society B: Biological Sciences, 363(1492), 789-813. DOI: https://doi.org/10.1098/rstb.2007.2184
Smith, P., & Olesen, J. E. (2010). Synergies between the mitigation of, and adaptation to, climate change in agriculture. The Journal of Agricultural Science, 148(5), 543–552. DOI: https://doi.org/10.1017/S0021859610000341
Spinoni, J., Barbosa, P., De Jager, A., McCormick, N., Naumann, G., Vogt, J. V., ... & Mazzeschi, M. (2019). A new global database of meteorological drought events from 1951 to 2016. Journal of Hydrology: Regional Studies, 22, 100593. DOI: https://doi.org/10.1016/j.ejrh.2019.100593
Srivastav, A. L., Dhyani, R., Ranjan, M., Madhav, S., & Sillanpää, M. (2021). Climate-resilient strategies for sustainable management of water resources and agriculture. Environmental Science and Pollution Research, 28(31), 41576–41595. DOI: https://doi.org/10.1007/s11356-021-14332-4
Suwaileh, W., Johnson, D., & Hilal, N. (2020). Membrane desalination and water re-use for agriculture: State of the art and future outlook. Desalination, 491, 114559. DOI: https://doi.org/10.1016/j.desal.2020.114559
Tanaka, K., Managi, S., Kondo, K., Masuda, K., & Yamamoto, Y. (2011). Potential climate effect on Japanese Rice productivity. Climate Change Economics, 2(03), 237–255. DOI: https://doi.org/10.1142/S2010007811000280
Tilahun, F., Legese, B., & Hora, E. (2020). Major Climate Change Adaptation and Coping Strategies in Borana, Southern Ethiopia: A Review.
Torquebiau, E., Rosenzweig, C., Chatrchyan, A. M., Andrieu, N., & Khosla, R. (2018). Identifying Climate-smart agriculture research needs. DOI: https://doi.org/10.1051/cagri/2018010
Tougeron, K., Brodeur, J., Le Lann, C., & Van Baaren, J. (2020). How climate change affects the seasonal ecology of insect parasitoids. Ecological Entomology, 45(2), 167–181. DOI: https://doi.org/10.1111/een.12792
Trommsdorff, M., Hopf, M., Hörnle, O., Berwind, M., Schindele, S., & Wydra, K. (2023). Can synergies in agriculture through an integration of solar energy reduce the cost of agrivoltaics? An economic analysis in apple farming. Applied Energy, 350, 121619. DOI: https://doi.org/10.1016/j.apenergy.2023.121619
Vernooy, R. (2022). Does crop diversification lead to climate-related resilience? Improving the theory through insights on practice. Agroecology and Sustainable Food Systems, 46(6), 877–901. DOI: https://doi.org/10.1080/21683565.2022.2076184
Villanueva, A. B., Halewood, M., & López-Noriega, I. (2015). Diversification in the national adaptation programs of action of Cambodia and Lao PDR. Effective Implementation of Crop Diversification Strategies for Cambodia, Lao PDR and Vietnam: Insights from Past Experiences and Ideas for New Research. Bioversity International, Rome, Italy. ISBN: 978-92-9255-011-0, 1, 9
Wada, Y., Gleeson, T., & Esnault, L. (2014). Wedge approach to water stress. Nature Geoscience, 7(9), 615–617. DOI: https://doi.org/10.1038/ngeo2241
Xue, J. (2017). Photovoltaic agriculture-New opportunity for photovoltaic applications in China. Renewable and Sustainable Energy Reviews, 73, 1-9. DOI: https://doi.org/10.1016/j.rser.2017.01.098
Zhang, Y., Huang, K., Yu, Y., & Wu, L. (2020). An uncertainty-based multivariate statistical approach to predict crop water footprint under climate change: a case study of Lake Dianchi Basin, China. Natural Hazards, 104, 91-110. DOI: https://doi.org/10.1007/s11069-020-04159-6
Zhao, J., Liu, D., & Huang, R. (2023). A review of climate-smart agriculture: Recent advancements, challenges, and future directions. Sustainability, 15(4), 3404. DOI: https://doi.org/10.3390/su15043404
Zhao, X., Calvin, K. V., Wise, M. A., Patel, P. L., Snyder, A. C., Waldhoff, S. T., ... & Edmonds, J. A. (2021). Global agricultural responses to interannual climate and biophysical variability. Environmental Research Letters, 16(10), 104037. DOI: https://doi.org/10.1088/1748-9326/ac2965
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Najma Majeed, Rimsha Sharif, Muhammad Noman Sheeraz, Sabeen Sajjad, Hafsa Maqsood, Muhammad Imran, Muhammad Usman Jamshaid, Muhammad Arif, Muhammad Baqir Hussain
This work is licensed under a Creative Commons Attribution 4.0 International License.