A Review on Emerging Strategies for Heavy Metal Remediation from Various Sources
DOI:
https://doi.org/10.38211/jqaas.2023.3.40Keywords:
Heavy metals, Sources, In-situ remediation, Ex-situ remediationAbstract
The current review addressed a research gap by identifying the most effective different remediation techniques and reducing soil contamination by adapting less cost-effective heavy metal contamination reduction techniques. Around 20 million hectares of terrestrial have been polluted by heavy metals that are above the geobaseline or regulatory limitations. These metals include Arsenic, Chromium, Lead, Cadmium, Mercury, Cobalt, Nickel, Zinc, and Selenium. Land reclamation benefits both the natural world and the economy. For environmental and health reasons, we should prohibit agricultural practices Nitrogen-based fertilizers, chemical pesticides
depraved management practices include poorly managed animal feeding operations, overgrazing, plowing, fertilizer, and improper, excessive, or badly timed use of pesticides that degrade local air quality. Many people feel that lead is the most hazardous metal there is. Production, use, and disposal of gasoline, fertilizers, paints, and explosives contribute to lead contamination, which is damaging to creatures besides the environment. Heavy metal contamination of the soil endangers wellbeing of all living creatures. An overview of the global problem of heavy metal poisoning of soil, the rate at which metals accumulate at toxic levels in plants, and the various types of soil contamination controls. Some in-situ and ex-situ remedy strategies for heavy metal contamination removal comprise external capping, encapsulation, landfilling, soil flushing and washing, electrokinetic extraction, stabilization, solidification, vitrification, phytoremediation, and bioremediation. The main objective is to preferred elimination/abstraction of impurities over the immobilization of hazardous containments, and among numerous methods in-situ soil remediation is more cost-effective than ex-situ handling. Reducing heavy metal exposure in people and plants is made easier with the help of the many strategies presented in this article.
References
Açıkel, Y. S. (2011). Use of biosurfactants in the removal of heavy metal ions from soils. Biomanagement of metal-contaminated soils, 183-223. DOI: https://doi.org/10.1007/978-94-007-1914-9_8
Arif, N., Yadav, V., Singh, S., Singh, S., Ahmad, P., Mishra, R. K., ... & Chauhan, D. K. (2016). Influence of high and low levels of plant-beneficial heavy metal ions on plant growth and development. Frontiers in environmental science, 4, 69. DOI: https://doi.org/10.3389/fenvs.2016.00069
Ahemad, M. (2019). Remediation of metalliferous soils through the heavy metal resistant plant growth promoting bacteria: paradigms and prospects. Arabian Journal of Chemistry, 12(7), 1365-1377. DOI: https://doi.org/10.1016/j.arabjc.2014.11.020
Alam, M. G. M., Snow, E. T., & Tanaka, A. (2003). Arsenic and heavy metal contamination of vegetables grown in Samta village, Bangladesh. Science of the total environment, 308(1-3), 83-96. DOI: https://doi.org/10.1016/S0048-9697(02)00651-4
Alghanmi, S. I., Al Sulami, A. F., El-Zayat, T. A., Alhogbi, B. G., & Salam, M. A. (2015). Acid leaching of heavy metals from contaminated soil collected from Jeddah, Saudi Arabia: kinetic and thermodynamics studies. International Soil and Water Conservation Research, 3(3), 196-208. DOI: https://doi.org/10.1016/j.iswcr.2015.08.002
Ali, H., Khan, E., & Ilahi, I. (2019). Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. Journal of chemistry, 20-19. DOI: https://doi.org/10.1155/2019/6730305
Atari, L., Esmaeili, S., Zahedi, A., Mohammadi, M. J., Zahedi, A., & Babaei, A. A. (2018). Removal of heavy metals by conventional water treatment plants using poly aluminum chloride. Toxin Reviews. DOI: https://doi.org/10.1080/15569543.2018.1431676
Baccaro, M., van den Berg, J. H., & van den Brink, N. W. (2021). Are long-term exposure studies needed? Short-term toxicokinetic model predicts the uptake of metal nanoparticles in earthworms after nine months. Ecotoxicology and Environmental Safety, 220, 112371. DOI: https://doi.org/10.1016/j.ecoenv.2021.112371
Bernard, A. (2008). Cadmium & its adverse effects on human health. Indian journal of medical research, 128(4), 557-564.
Chemlal, R., Abdi, N., Lounici, H., Drouiche, N., Pauss, A., & Mameri, N. (2013). Modeling and qualitative study of diesel biodegradation using biopile process in sandy soil. International Biodeterioration & Biodegradation, 78, 43-48. DOI: https://doi.org/10.1016/j.ibiod.2012.12.014
Chaney, R. L., & Baklanov, I. A. (2017). Phytoremediation and phytomining: status and promise. In Advances in botanical research (Vol. 83, pp. 189-221). Academic Press. DOI: https://doi.org/10.1016/bs.abr.2016.12.006
Li, C., Zhou, K., Qin, W., Tian, C., Qi, M., Yan, X., & Han, W. (2019). A review on heavy metals contamination in soil: effects, sources, and remediation techniques. Soil and Sediment Contamination: An International Journal, 28(4), 380-394.
Dash, H. R., & Das, S. (2015). Bioremediation of inorganic mercury through volatilization and biosorption by transgenic Bacillus cereus BW-03 (pPW-05). International Biodeterioration & Biodegradation, 103, 179-185. DOI: https://doi.org/10.1016/j.ibiod.2015.04.022
Derakhshan Nejad, Z., Jung, M. C., & Kim, K. H. (2018). Remediation of soils contaminated with heavy metals with an emphasis on immobilization technology. Environmental geochemistry and health, 40, 927-953. DOI: https://doi.org/10.1007/s10653-017-9964-z
Delille, D., Duval, A., & Pelletier, E. (2008). Highly efficient pilot biopiles for on-site fertilization treatment of diesel oil-contaminated sub-Antarctic soil. Cold Regions Science and Technology, 54(1), 7-18. DOI: https://doi.org/10.1016/j.coldregions.2007.09.003
Ekmekçi, Y., Tanyolac, D., & Ayhan, B. (2008). Effects of cadmium on antioxidant enzyme and photosynthetic activities in leaves of two maize cultivars. Journal of plant physiology, 165(6), 600-611. DOI: https://doi.org/10.1016/j.jplph.2007.01.017
Galal, T. M., Gharib, F. A., Ghazi, S. M., & Mansour, K. H. (2017). Phytostabilization of heavy metals by the emergent macrophyte Vossia cuspidata (Roxb.) Griff.: a phytoremediation approach. International journal of phytoremediation, 19(11), 992-999. DOI: https://doi.org/10.1080/15226514.2017.1303816
Gao, Z., Fu, W., Zhang, M., Zhao, K., Tunney, H., & Guan, Y. (2016). Potentially hazardous metals contamination in soil-rice system and it's spatial variation in Shengzhou City, China. Journal of Geochemical Exploration, 167, 62-69. DOI: https://doi.org/10.1016/j.gexplo.2016.05.006
Garbisu, C., & Alkorta, I. (2003). Basic concepts on heavy metal soil bioremediation. ejmp & ep (European Journal of Mineral Processing and Environmental Protection), 3(1), 58-66.
Guo, X., Wei, Z., Wu, Q., Li, C., Qian, T., & Zheng, W. (2016). Effect of soil washing with only chelators or combining with ferric chloride on soil heavy metal removal and phytoavailability: Field experiments. Chemosphere, 147, 412-419. DOI: https://doi.org/10.1016/j.chemosphere.2015.12.087
Gomes, H. I., Dias-Ferreira, C., & Ribeiro, A. B. (2012). Electrokinetic remediation of organochlorines in soil: enhancement techniques and integration with other remediation technologies. Chemosphere, 87(10), 1077-1090. DOI: https://doi.org/10.1016/j.chemosphere.2012.02.037
Hallaji, H., Keshtkar, A. R., & Moosavian, M. A. (2015). A novel electrospun PVA/ZnO nanofiber adsorbent for U (VI), Cu (II) and Ni (II) removal from aqueous solution. Journal of the Taiwan Institute of Chemical Engineers, 46, 109-118. DOI: https://doi.org/10.1016/j.jtice.2014.09.007
Hu, B., Chen, S., Hu, J., Xia, F., Xu, J., Li, Y., & Shi, Z. (2017). Application of portable XRF and VNIR sensors for rapid assessment of soil heavy metal pollution. PloS one, 12(2), e0172438. DOI: https://doi.org/10.1371/journal.pone.0172438
Imran, M., Rehim, A., Sarwar, N., & Hussain, S. (2016). Zinc bioavailability in maize grains in response of phosphorous–zinc interaction. Journal of Plant Nutrition and Soil Science, 179(1), 60-66. DOI: https://doi.org/10.1002/jpln.201500441
Halttunen, T., Collado, M. C., El‐Nezami, H., Meriluoto, J., & Salminen, S. (2008). Combining strains of lactic acid bacteria may reduce their toxin and heavy metal removal efficiency from aqueous solution. Letters in applied microbiology, 46(2), 160-165. DOI: https://doi.org/10.1111/j.1472-765X.2007.02276.x
Khalid, S., Shahid, M., Niazi, N. K., Murtaza, B., Bibi, I., & Dumat, C. (2017). A comparison of technologies for remediation of heavy metal contaminated soils. Journal of geochemical exploration, 182, 247-268. DOI: https://doi.org/10.1016/j.gexplo.2016.11.021
Kolawole, T. O., Olatunji, A. S., Jimoh, M. T., & Fajemila, O. T. (2018). Heavy metal contamination and ecological risk assessment in soils and sediments of an industrial area in Southwestern Nigeria. Journal of Health and Pollution, 8(19), 180906. DOI: https://doi.org/10.5696/2156-9614-8.19.180906
Kim, J. H., Park, Y.S., & Lee, J.Y. (2017). Study on the solidification/stabilization of heavy metal contaminated soil and mine tailings mixed with industrial wastes and indigenous bacteria. Journal of Korea Society of Waste Management. 34,307–319. DOI: https://doi.org/10.9786/kswm.2017.34.3.307
Li, C., Zhou, K., Qin, W., Tian, C., Qi, M., Yan, X., & Han, W. (2019). A review on heavy metals contamination in soil: effects, sources, and remediation techniques. Soil and Sediment Contamination: An International Journal, 28(4), 380-394. DOI: https://doi.org/10.1080/15320383.2019.1592108
Liu, L., W., Li, Song, W., & Guo, M. (2018). Remediation techniques for heavy metal-contaminated soils: Principles and applicability. Science of the total environment, 633, 206-219. DOI: https://doi.org/10.1016/j.scitotenv.2018.03.161
Lane, T. W., & Morel, F. M. (2000). A biological function for cadmium in marine diatoms. Proceedings of the National Academy of Sciences, 97(9), 4627-4631. DOI: https://doi.org/10.1073/pnas.090091397
Marks, P. J., Wujcik, W. J., & Loncar, A. F. (1994). Remediation technologies screening matrix and reference guide (p. 0591). Defense Technical Information Center.
Mishra, J., Singh, R., & Arora, N. K. (2017). Alleviation of heavy metal stress in plants and remediation of soil by rhizosphere microorganisms. Frontiers in microbiology,8, 295763. DOI: https://doi.org/10.3389/fmicb.2017.01706
Karaca, O., Cameselle, C., & Reddy, K. R. (2018). Mine tailing disposal sites: contamination problems, remedial options and phytocaps for sustainable remediation. Reviews in Environmental Science and Bio/Technology, 17, 205-228. DOI: https://doi.org/10.1007/s11157-017-9453-y
Olexsey, R. A., & Parker, R. A. (2006). Current and future in situ treatment techniques for the remediation of hazardous substances in soil, sediments, and groundwater. In Soil and water pollution monitoring, protection and remediation (pp. 211-219). Springer Netherlands. DOI: https://doi.org/10.1007/978-1-4020-4728-2_14
Oves, M., Saghir Khan, M., Huda Qari, A., Nadeen Felemban, M., & Almeelbi, T. (2016). Heavy metals: biological importance and detoxification strategies. Journal of Bioremediation and Biodegradation,7(2), 1-15.
Orji, O. U., Awoke, J. N., Aja, P. M., Aloke, C., Obasi, O. D., Alum, E. U., & Oka, G. O. (2021). Halotolerant and metalotolerant bacteria strains with heavy metals biorestoration possibilities isolated from Uburu Salt Lake, Southeastern, Nigeria. Heliyon, 7(7). DOI: https://doi.org/10.1016/j.heliyon.2021.e07512
Orłowska, E., Godzik, B., & Turnau, K. (2012). Effect of different arbuscular mycorrhizal fungal isolates on growth and arsenic accumulation in Plantago lanceolata L. Environmental Pollution, 168, 121-130. DOI: https://doi.org/10.1016/j.envpol.2012.04.026
Pan, X. D., Wu, P. G., & Jiang, X. G. (2016). Levels and potential health risk of heavy metals in marketed vegetables in Zhejiang, China. Scientific reports, 6(1), 20317. DOI: https://doi.org/10.1038/srep20317
Pierart, A., Shahid, M., & Khalid, S. (2015). Pollutants in urban agriculture: sources, health risk assessment and sustainable management. In Bioremediation of Agricultural Soils (pp. 61-84). CRC Press.
Prakash, A. A., Prabhu, N. S., Rajasekar, A., Parthipan, P., AlSalhi, M. S., Devanesan, S., & Govarthanan, M. (2021). Bio-electrokinetic remediation of crude oil contaminated soil enhanced by bacterial biosurfactant. Journal of Hazardous Materials, 405, 124061. DOI: https://doi.org/10.1016/j.jhazmat.2020.124061
Pourrut, B., Shahid, M., Dumat, C., Winterton, P., & Pinelli, E. (2011). Lead uptake, toxicity, and detoxification in plants. Reviews of environmental contamination and toxicology volume 213, 113-136. DOI: https://doi.org/10.1007/978-1-4419-9860-6_4
Pichhode, M., & Nikhil, K. (2015). Teak (Tectona grandis) plantation towards carbon sequestration and climate change mitigation in district Balaghat, Madhya Pradesh. India. India. Carbon, 151, 155.
Paul, O., Jasu, A., Lahiri, D., Nag, M., & Ray, R. R. (2021). In situ and ex situ bioremediation of heavy metals: the present scenario. Journal of Environmental Engineering and Landscape Management, 29(4), 454-469. DOI: https://doi.org/10.3846/jeelm.2021.15447
Qingjie, G., Jun, D., Yunchuan, X., Qingfei, W., & Liqiang, Y. (2008). Calculating pollution indices by heavy metals in ecological geochemistry assessment and a case study in parks of Beijing. Journal of China university of geosciences, 19(3), 230-241. DOI: https://doi.org/10.1016/S1002-0705(08)60042-4
Qi, J., Lai, X., Wang, J., Tang, H., Ren, H., Yang, Y., .& Wang, D. (2015). Multi-shelled hollow micro-/nanostructures. Chemical Society Reviews, 44(19), 6749-6773. DOI: https://doi.org/10.1039/C5CS00344J
Rascio, N., & Navari-Izzo, F. (2011). Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting?. Plant science, 180(2), 169-181. DOI: https://doi.org/10.1016/j.plantsci.2010.08.016
Rogival, D., Scheirs, J., & Blust, R. (2007). Transfer and accumulation of metals in a soil–diet–wood mouse food chain along a metal pollution gradient. Environmental Pollution, 145(2), 516-528. DOI: https://doi.org/10.1016/j.envpol.2006.04.019
Roy, M., & McDonald, L. M. (2015). Metal uptake in plants and health risk assessments in metal‐contaminated smelter soils. Land degradation & development, 26(8), 785-792. DOI: https://doi.org/10.1002/ldr.2237
Sivakumar, D., Kandaswamy, A. N., Gomathi, V., Rajeshwaran, R., & Murugan, N. (2014). Bioremediation studies on reduction of heavy metals toxicity. Pollution Research, 33(3), 553-558.
Sangeetha, V., Thenmozhi, A., & Devasena, M. (2021). Enhanced removal of lead from soil using biosurfactant derived from edible oils.Soil and Sediment Contamination: An International Journal, 30, 135-147. DOI: https://doi.org/10.1080/15320383.2020.1811204
Sarwar, N., Imran, M., Shaheen, M. R., Ishaque, W., Kamran, M. A., Matloob, A., & Hussain, S. (2017). Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. Chemosphere, 171, 710-721. DOI: https://doi.org/10.1016/j.chemosphere.2016.12.116
Sayqal, A., & Ahmed, O. B. (2021). Advances in heavy metal bioremediation: an overview. Applied Bionics and Biomechanics, 20-21. DOI: https://doi.org/10.1155/2021/1609149
Singh, R., Singh, S., Parihar, P., Mishra, R. K., Tripathi, D. K., Singh, V. P., & Prasad, S. M. (2016). Reactive oxygen species (ROS): beneficial companions of plants’ developmental processes. Frontiers in plant science, 7, 186069. DOI: https://doi.org/10.3389/fpls.2016.01299
Senol, S., Kaya, B., Salt, I., Tirnakci, B., & Salt, Y. (2022). Pervaporation separation of ethylacetate-ethanol mixtures using zeolite 13X-filled poly (dimethylsiloxane) membrane. Chemical Engineering Communications, 209(8), 1048-1057. DOI: https://doi.org/10.1080/00986445.2021.1940155
Sarwar, N., Saifullah, Malhi, S. S., Zia, M. H., Naeem, A., Bibi, S., & Farid, G. (2010). Role of mineral nutrition in minimizing cadmium accumulation by plants. Journal of the Science of Food and Agriculture, 90(6), 925-937. DOI: https://doi.org/10.1002/jsfa.3916
Shahid, M., Khalid, S., Abbas, G., Shahid, N., Nadeem, M., Sabir, M., & Dumat, C. (2015). Heavy metal stress and crop productivity. Crop production and global environmental issues, 1-25. DOI: https://doi.org/10.1007/978-3-319-23162-4_1
Shahid, M., Xiong, T., Castrec-Rouelle, M., Leveque, T., & Dumat, C. (2013). Water extraction kinetics of metals, arsenic and dissolved organic carbon from industrial contaminated poplar leaves. Journal of Environmental Sciences, 25(12), 2451-2459. DOI: https://doi.org/10.1016/S1001-0742(12)60197-1
Shakoor, M. B., Niazi, N. K., Bibi, I., Rahman, M. M., Naidu, R., Dong, Z., & Arshad, M. (2015). Unraveling health risk and speciation of arsenic from groundwater in rural areas of Punjab, Pakistan. International journal of environmental research and public health, 12(10), 12371-12390. DOI: https://doi.org/10.3390/ijerph121012371
Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy metal toxicity and the environment. Molecular, clinical and environmental toxicology: volume 3: environmental toxicology, 133-164. DOI: https://doi.org/10.1007/978-3-7643-8340-4_6
Tao, X., Li, A., & Yang, H. (2017). Immobilization of metals in contaminated soils using natural polymer-based stabilizers. Environmental pollution, 222, 348-355. DOI: https://doi.org/10.1016/j.envpol.2016.12.028
Tong, R., Yang, X., Su, H., Pan, Y., Zhang, Q., Wang, J., & Long, M. (2018). Levels, sources and probabilistic health risks of polycyclic aromatic hydrocarbons in the agricultural soils from sites neighboring suburban industries in Shanghai. Science of the Total Environment, 616, 1365-1373. DOI: https://doi.org/10.1016/j.scitotenv.2017.10.179
Tran, H. T., Lin, C., Hoang, H. G., Bui, X. T., & Vu, C. T. (2022). Soil washing for the remediation of dioxin-contaminated soil: A review. Journal of Hazardous Materials, 421, 126767. DOI: https://doi.org/10.1016/j.jhazmat.2021.126767
Toan, N. S., Tan, X., Phuong, N. T. D., Aron, N. S. M., Chew, K. W., Khoo, K. S., & Show, P. L. (2021). Advanced green bioprocess of soil carbohydrate extraction from long-term conversion of forest soil to paddy field. Journal of Environmental Chemical Engineering, 9(5), 106021. DOI: https://doi.org/10.1016/j.jece.2021.106021
Vamerali, T., Bandiera, M., & Mosca, G. (2010). Field crops for phytoremediation of metal-contaminated land. A review. Environmental Chemistry Letters, 8, 1-17. DOI: https://doi.org/10.1007/s10311-009-0268-0
Wang, J., Zheng, S., Shao, Y., Liu, J., Xu, Z., & Zhu, D. (2010). Amino-functionalized Fe3O4@ SiO2 core–shell magnetic nanomaterial as a novel adsorbent for aqueous heavy metals removal. Journal of colloid and interface science, 349(1), 293-299. DOI: https://doi.org/10.1016/j.jcis.2010.05.010
Wang, Z., Tan, K., Cai, J., Hou, S., Wang, Y., Jiang, P., & Liang, M. (2019). Silica oxide encapsulated natural zeolite for high efficiency removal of low concentration heavy metals in water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 561, 388-394. DOI: https://doi.org/10.1016/j.colsurfa.2018.10.065
Xiong, T., Leveque, T., Shahid, M., Foucault, Y., Mombo, S., & Dumat, C. (2014). Lead and cadmium Phyto availability and human bio accessibility for vegetables exposed to soil or atmospheric pollution by process ultrafine particles. Journal of environmental quality, 43(5), 1593-1600. DOI: https://doi.org/10.2134/jeq2013.11.0469
Xu, J., Yin, H., & Li, X. (2009). Protective effects of proline against cadmium toxicity in micro propagated hyperaccumulator, Solanum nigrum L. Plant cell reports, 28, 325-333. DOI: https://doi.org/10.1007/s00299-008-0643-5
Yadav, K. K., Gupta, N., Kumar, V., & Singh, J. K. (2017). Bioremediation of heavy metals from contaminated sites using potential species: a review. Indian Journal of Environmental Protection, 37(1), 65.
Yang, J., Liu, Z., Wan, X., Zheng, G., Yang, J., Zhang, H., & Han, X. (2015). Interaction between sulfur and lead in toxicity, iron plaque formation and lead accumulation in rice plant. Ecotoxicology and Environmental Safety, 128, 206-212. DOI: https://doi.org/10.1016/j.ecoenv.2016.02.021
Zhao, X. Y., Yang, J. Y., Ning, N., & Yang, Z. S. (2022). Chemical stabilization of heavy metals in municipal solid waste incineration fly ash: a review. Environmental Science and Pollution Research, 29(27), 40384-40402. DOI: https://doi.org/10.1007/s11356-022-19649-2
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Iqra Ghafoor, Tayyaba Naz, Shah Nawaz, Muhammad Mazhar Iqbal, Shazia Iqbal, Tayyaba Akhtar, Hafiz Khurram Shurjeel
This work is licensed under a Creative Commons Attribution 4.0 International License.