Molecular Characterization of Virulent Genes in Neonatal Respiratory Infections Associated Pathogenic Strains of Pseudomonas aeruginosa Using PCR Technique
DOI:
https://doi.org/10.38211/jms.2024.03.101Abstract
The current research study anticipated the identification of toxic genes in Pseudomonas aeruginosa involved in quorum sensing (QS), as many virulence factors are regulated by QS. The objective of the current research was to isolate and screen the pathogenic strains of P. aeruginosa from neonate’s sputum samples and molecular characterization of virulent genes in these strains. The P. aeruginosa was screened out in the Microbiology Laboratory, Department of Zoology, Government College University Lahore. Different identification tests and Molecular characterization was conducted. Molecular characterization of virulent genes was performed by using specific primers. Products of PCR were sequenced in order to get accession numbers from the NCBI site. The identification of genes LasR, LasI, rhlR, and rhlI was made in the P. aeruginosa strains (SS5, SS6, and SS11). Recent studies have disclosed that these virulent genes play a significant role in P. aeruginosa strains’ resistance against various antibacterial agents. P. aeruginosa possesses diverse metabolic capabilities to manage survival in various conditions and can exhibit extreme resistance to antibiotics, facilitating its spread among different environments especially in hospitals. These genes involved in overall pathogenicity of P. aeruginosa.
References
Abbott KA (2024) Diseases of the Respiratory System. In Sheep Veterinary Practice (pp. 483-508): CRC Press. DOI: https://doi.org/10.1201/9781003344346-21
Akhand AA, Ahsan N (2023) Cells and Organs of the Immune System. Immunology for Dentistry 1-12. DOI: https://doi.org/10.1002/9781119893035.ch1
Ali NM, Rehman S, Mazhar SA, Liaqat I, Mazhar B (2020) Psuedomonas aeruginosa-associated acute and chronic pulmonary infections. In Pathogenic Bacteria. IntechOpen. DOI: https://doi.org/10.5772/intechopen.93504
Asfahl KL, Smalley NE, Chang AP, Dandekar AA (2022) Genetic and transcriptomic characteristics of RhlR-dependent quorum sensing in cystic fibrosis isolates of Pseudomonas aeruginosa. Msystems 7(2): e00113-22. DOI: https://doi.org/10.1128/msystems.00113-22
Awari VG, Umeoduagu ND, Agu KC, Obasi CJ, Okonkwo NN, Chidozie CP (2024) Antibiogram of Pathogenic Pseudomonas aeruginosa Isolated from Hospital Environment. International Refereed Journal of Engineering and Science 13 (2): 1, 10.
Berglund LG, Rissanen S, Jussila K, Kaufman JW, Piirilä P, Savolainen KM, Juvonen R (2020) Physiological and toxicological considerations. In Industrial ventilation design guidebook (pp. 111-226): Academic Press. DOI: https://doi.org/10.1016/B978-0-12-816780-9.00005-8
Bogiel T, Prażyńska M, Kwiecińska-Piróg J, Mikucka A, Gospodarek-Komkowska E (2020) Carbapenem-resistant Pseudomonas aeruginosa strains-distribution of the essential enzymatic virulence factors genes. Antibiotics 10(1): 8. DOI: https://doi.org/10.3390/antibiotics10010008
Chaudhry M, Shafique M, Ali NM, Munir S, Wasif M, Hayee S, Riaz, S (2024) Prevalence of Pseudomonas aeruginosa associated chronic and acute respiratory infections and role of antibiotics as antibacterial agents against isolated pathogens Short title: P. aeruginosa associated respiratory infections. History of Medicine 10(2): 1128-1145. DOI: https://doi.org/10.48047/HM.10.2.2024.1128-1145
Conceição-Silva F, Reis CS, De Luca PM, Leite-Silva J, Santiago MA, Morrot A, Morgado FN (2021) The immune system throws its traps: cells and their extracellular traps in disease and protection. Cells 10(8): 1891. DOI: https://doi.org/10.3390/cells10081891
Deshmukh R, Bandyopadhyay N, Abed SN, Bandopadhyay S, Pal Y, Deb P K (2020) Strategies for pulmonary delivery of drugs. In Drug Delivery Systems (pp. 85-129): Academic Press. DOI: https://doi.org/10.1016/B978-0-12-814487-9.00003-X
Everett MJ, Davies DT (2021) Pseudomonas aeruginosa elastase (LasB) as a therapeutic target. Drug Discovery Today 26(9): 2108-2123. DOI: https://doi.org/10.1016/j.drudis.2021.02.026
Gautam A (2022) Phenol-chloroform DNA isolation method. In DNA and RNA Isolation Techniques for Non-Experts (pp. 33-39). Cham: Springer International Publishing. DOI: https://doi.org/10.1007/978-3-030-94230-4_3
Govers C, Calder P C, Savelkoul HF, Albers R, van Neerven RJ (2022) Ingestion, immunity, and infection: nutrition and viral respiratory tract infections. Frontiers in Immunology 13: 841532. DOI: https://doi.org/10.3389/fimmu.2022.841532
Guillaume O, Butnarasu C, Visentin S, Reimhult E (2022) Interplay between biofilm microenvironment and pathogenicity of Pseudomonas aeruginosa in cystic fibrosis lung chronic infection. Biofilm 4: 100089. DOI: https://doi.org/10.1016/j.bioflm.2022.100089
Honish RL (2021) Chest and Lung Diseases. In Over 55 (pp. 81-100): Psychology Press. DOI: https://doi.org/10.4324/9781315792651-4
Jo J, Price-Whelan A, Dietrich L E (2022) Gradients and consequences of heterogeneity in biofilms. Nature Reviews Microbiology 20(10):593-607. DOI: https://doi.org/10.1038/s41579-022-00692-2
Jurado-Martín I, Sainz-Mejías M, McClean S (2021) Pseudomonas aeruginosa: an audacious pathogen with an adaptable arsenal of virulence factors. International journal of molecular sciences 22(6): 3128. DOI: https://doi.org/10.3390/ijms22063128
Karmegham N, Vellasamy S, Natesan B, Sharma MP, Al Farraj DA, Elshikh MS (2020) Characterization of antifungal metabolite phenazine from rice rhizosphere fluorescent pseudomonads (FPs) and their effect on sheath blight of rice. Saudi Journal of Biological Sciences 27(12):3313-3326. DOI: https://doi.org/10.1016/j.sjbs.2020.10.007
Khan F (2024) Multifaceted strategies for alleviating Pseudomonas aeruginosa infection by targeting protease activity: Natural and synthetic molecules. International Journal of Biological Macromolecules 134533. DOI: https://doi.org/10.1016/j.ijbiomac.2024.134533
Kohlerschmidt DJ, Mingle LA, Dumas NB, Nattanmai G (2021) Identification of aerobic Gram-negative bacteria. In Practical handbook of microbiology (pp. 59-70). CRC Press. DOI: https://doi.org/10.1201/9781003099277-7
Legendre M, Zaragosi LE, Mitchison HM (2021, February) Motile cilia and airway disease. In Seminars in cell & developmental biology (Vol. 110, pp. 19-33): Academic Press. DOI: https://doi.org/10.1016/j.semcdb.2020.11.007
Magnabosco C, Husain F. Paoletti MM, Parsons C, Payette JG, Schwartz SL, Fournier GP (2024) Toward a Natural History of Microbial Life. Annual Review of Earth and Planetary Sciences 52(1): 85-108. DOI: https://doi.org/10.1146/annurev-earth-031621-070542
Michael G, Garba L, Adamu MT, Manga MM, Yerima AA, Isa S (2023) Detection of Multidrug-Resistant Acinetobacter baumannii among Gram-Negative Bacteria Isolated from Clinical Samples.
Morin CD, Déziel E, Gauthier J, Levesque RC, Lau G W (2021) An organ system-based synopsis of Pseudomonas aeruginosa virulence. Virulence 12(1): 1469-1507. DOI: https://doi.org/10.1080/21505594.2021.1926408
Nag M, Lahiri D, Mukherjee D, Garai S, Banerjee R, Ray RR (2021). Biofilms and acute and chronic infections. Biofilm-Mediated Diseases: Causes and Controls 73-100. DOI: https://doi.org/10.1007/978-981-16-0745-5_4
Parasuraman P, Busi S, Lee JK (2024) Standard Microbiological Techniques (Staining, Morphological and Cultural Characteristics, Biochemical Properties, and Serotyping) in the Detection of ESKAPE Pathogens. In ESKAPE Pathogens: Detection, Mechanisms and Treatment Strategies (pp. 119-155). Singapore: Springer Nature Singapore. DOI: https://doi.org/10.1007/978-981-99-8799-3_4
Pelegrin AC, Palmieri M, Mirande C, Oliver A, Moons P, Goossens H, van Belkum A (2021) Pseudomonas aeruginosa: a clinical and genomics update. FEMS Microbiology Reviews 45(6): fuab026. DOI: https://doi.org/10.1093/femsre/fuab026
Sarkar S (2020) Release mechanisms and molecular interactions of Pseudomonas aeruginosa extracellular DNA. Applied Microbiology and Biotechnology 104(15): 6549-6564. DOI: https://doi.org/10.1007/s00253-020-10687-9
Sawa T, Momiyama K, Mihara T, Kainuma A, Kinoshita M, Moriyama K (2020) Molecular epidemiology of clinically high‐risk Pseudomonas aeruginosa strains: Practical overview. Microbiology and Immunology 64(5): 331-344. DOI: https://doi.org/10.1111/1348-0421.12776
Scott B (2022) Uncovering the role of Macrophage Infectivity Potentiator (Mip) proteins in Pseudomonas aeruginosa (PA01) virulence (Doctoral dissertation, University of East Anglia).
Sharma K, Singh R, Tripathi PN (2023) Isolation and enumeration of bacteria from common green vegetables available in nearby market at Ayodhya: Isolation of Bacteria. The Scientific Temper 14(01): 128-141. DOI: https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.1.15
Shouman H, Said HS, Kenawy HI, Hassan R (2023) Molecular and biological characterization of pyocyanin from clinical and environmental Pseudomonas aeruginosa. Microbial Cell Factories 22(1): 166. DOI: https://doi.org/10.1186/s12934-023-02169-0
Simukoko H (2021) Refocusing Functional Anatomy and Immunology of the Respiratory Mucosa in the Advent of Covid-19. In Biotechnology to Combat COVID-19 (p. 299): IntechOpen. DOI: https://doi.org/10.5772/intechopen.96251
Sionov RV, Steinberg D (2022) Targeting the holy triangle of quorum sensing, biofilm formation, and antibiotic resistance in pathogenic bacteria. Microorganisms 10(6): 1239. DOI: https://doi.org/10.3390/microorganisms10061239
SÜER D (2021) Molecular Detection of Some Virulence Genes In Pseudomonas aeruginosa Isolated From Clinical Source (Doctoral dissertation, Doctoral dissertation, NEAR EAST UNIVERSITY).
Thi MTT, Wibowo D, Rehm BH (2020) Pseudomonas aeruginosa biofilms. International journal of molecular sciences 21(22): 8671. DOI: https://doi.org/10.3390/ijms21228671
Wang C, Ye Q, Jiang A, Zhang J, Shang Y, Li F, Wang J (2022) Pseudomonas aeruginosa detection using conventional PCR and quantitative real-time PCR based on species-specific novel gene targets identified by pangenome analysis. Frontiers in Microbiology 13: 820431. DOI: https://doi.org/10.3389/fmicb.2022.820431
Wess L (2023) The Curious World of Bacteria. Greystone Books Ltd.
Wu T, Zhang Z, Li T, Dong X, Wu D, Zhu L, Zhang Y (2024) The type III secretion system facilitates systemic infections of Pseudomonas aeruginosa in the clinic. Microbiology Spectrum 12(1): e02224-23 DOI: https://doi.org/10.1128/spectrum.02224-23
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Maham Chaudhry, Safia Rehman, Asif Rasheed, Areej Hassan, Saima Shokat, Nazish Mazhar ali, Aasma Riaz, Samreen Riaz

This work is licensed under a Creative Commons Attribution 4.0 International License.