The Antibiotic Resistance and Molecular Characterization of ESBL and MBL-ProducingKlebsiella pneumoniaefrom Chickens
DOI:
https://doi.org/10.38211/jms.2024.01.64Abstract
Due to its increasing prevalence, antimicrobial resistance (AMR) is one of the biggest public health concerns. Multiple studies have shown that the main cause of resistance in gram-negative bacteria is the formation of ESBL. Gram-negative bacteria, such as Klebsiella pneumoniae, are often susceptible to popular antibiotics like penicillins and cephalosporins. However, when these bacteria create extended-spectrum beta-lactamases (ESBLs), they develop resistance to these drugs. The global threat posed by Enterobacteriaceae that produce ESBLs has been consistently increasing. Klebsiella pneumoniae is a non-motile bacterium with a capsule, rod-shaped structure, and is categorized as Gram-negative. This work focused on analyzing the morphological and molecular features of Beta-Lactamase (ESBL) and Metallo-Beta-Lactamase (MBL) producing Klebsiella pneumoniae Isolates from Poultry sources. The strains were obtained from different sources in three different cities of Pakistan. We analyzed the antibiogram profiles of the samples and investigated their profiles of resistance genes. The results demonstrate that K. pneumoniae isolates were found in 49% (49/100) of the poultry samples. Specifically, 15 (75%) were collected from Chicken ceca, 10 (50%) from the heart, 10 (50%) from the liver, 9 (45%) from the lungs, and 5 (25%) from the trachea. Following incubation on MacConkey agar, colonies that were suspected to be K. pneumoniae were identified using phenotypic testing. The results showed that out of the 49 strains tested, 26 (53%) were found to be multidrug-resistant (MDR), 21 (43%) were positive for extended-spectrum beta-lactamase (ESBL), and 12 (25%) were positive for metallo-beta-lactamase (MBL) according to the double-disk synergy test (DDST). These strains exhibited resistance to augmentin (92%), ceftazidime (59%), piperacillin/tazobactam (59%), cefotaxime (57%), doxycycline (55%), ceftriaxone (53%), aztreonam (49%), meropenem (46%), and imipenem (46%). The genotypic prevalence of blaCTX-M-1 was 30%, blaIMP was 14%, and blaVIM was 8%. The occurrence of ESBL and MBL-producing bacteria in chicken samples is substantial, and there is a consistent rise in levels of antibiotic resistance. Hence, it is imperative to use prudence while prescription antibiotics and guarantee their optimal utilization.
References
Abadullah, S. M., & Zghair, Z. R. (2016). Isolation of Klebsiella pneumoniae from urine of human and cattle in Baghdad city with histopathological study experimentally in mice. Int. J. Adv. Res. Biol. Sci, 3(10), 38-45. DOI: https://doi.org/10.22192/ijarbs.2016.03.10.006
Abrar, S., Ain, N. U., Liaqat, H., Hussain, S., Rasheed, F., & Riaz, S. (2019). Distribution of bla CTX− M, bla TEM, bla SHV and bla OXA genes in Extended-spectrum-β-lactamase-producing Clinical isolates: A three-year multi-center study from Lahore, Pakistan. Antimicrobial Resistance & Infection Control, 8(1), 80. DOI: https://doi.org/10.1186/s13756-019-0536-0
Adam, M. A., & Elhag, W. I. (2018). Prevalence of metallo-β-lactamase acquired genes among carbapenems susceptible and resistant Gram-negative clinical isolates using multiplex PCR, Khartoum hospitals, Khartoum Sudan. BMC infectious Diseases, 18, 1-6. DOI: https://doi.org/10.1186/s12879-018-3581-z
Ahmed, O. B., & Dablool, A. S. (2017). Quality improvement of the DNA extracted by boiling method in gram-negative bacteria. International Journal of Bioassays, 6(4), 5347-5349. DOI: https://doi.org/10.21746/ijbio.2017.04.004
Ajayi, A. O., & Egbebi, A. O. (2011). Antibiotic susceptibility of Salmonella typhi and Klebsiella pneumoniae from poultry and local birds in Ado-Ekiti, Ekiti-State, Nigeria. Annals of Biological Research, 2(3), 431-437.
Al-Charrakh, A. H., Yousif, S. Y., & Al-Janabi, H. S. (2011). Occurrence and detection of extended-spectrum ß-lactamases in Klebsiella isolates in Hilla, Iraq. African Journal of Biotechnology, 10(4), 657-665.
Aminul, P., Anwar, S., Molla, M. M. A., & Miah, M. R. A. (2021). Evaluation of antibiotic resistance patterns in clinical isolates of Klebsiella pneumoniae in Bangladesh. Biosafety and Health, 3(6), 301-306. DOI: https://doi.org/10.1016/j.bsheal.2021.11.001
Ansari M, Aryal SC, Rai G, Rai KR, Pyakurel S, Bhandari B, Sah AK, Rai SK. Prevalence of multidrug-resistance and blaVIM and blaIMP genes among gram-negative clinical isolates in tertiary care hospital, Kathmandu, Nepal. Iran J Microbiol. 2021 Jun;13(3):303-311. DOI: https://doi.org/10.18502/ijm.v13i3.6392
Atlas, R. M., Parks, L. C., & Brown, A. E. (1995). Laboratory manual of experimental microbiology.
Bale, T. L., Contarino, A., Smith, G. W., Chan, R., Gold, L. H., Sawchenko, P. E., & Lee, K. F. (2000). Mice deficient for corticotropin-releasing hormone receptor-2 display anxiety-like behaviour and are hypersensitive to stress. Nature genetics, 24(4), 410-414. DOI: https://doi.org/10.1038/74263
Borah, V. V., Saikia, K. K., Chandra, P., Hazarika, N. K., & Chakravarty, R. (2016). New Delhi metallo-β-lactamase and extended spectrum β-lactamases co-producing isolates are high in community-acquired urinary infections in Assam as detected by a novel multiplex polymerase chain reaction assay. Indian journal of medical microbiology, 34(2), 173. DOI: https://doi.org/10.4103/0255-0857.176853
Brisse, S., Grimont, F. P. A. D., & Grimont, P. A. (2006). The genus klebsiella. Prokaryotes, 6(chapter 3.3. 8), 159-196. DOI: https://doi.org/10.1007/0-387-30746-X_8
Chaudhary, M., & Payasi, A. (2013). Antimicrobial susceptibility patterns and molecular characterization of Klebsiella pneumoniae clinical isolates from north Indian patients. Int J Med Med Sci, 46, 1218-1224.
Córdova-Espinoza MG, Giono-Cerezo S, Sierra-Atanacio EG, Escamilla-Gutiérrez A, Carrillo-Tapia E, Carrillo-Vázquez LI, Mendoza-Pérez F, Leyte-Lugo M, González-Vázquez R, Mayorga-Reyes L, González-Vázquez R. Isolation and Identification of Multidrug-Resistant Klebsiella pneumoniae Clones from the Hospital Environment. Pathogens. 2023 Apr 23;12(5):634. DOI: https://doi.org/10.3390/pathogens12050634
Dandachi, I., Sokhn, E. S., Dahdouh, E. A., Azar, E., El-Bazzal, B., Rolain, J. M., & Daoud, Z. (2018). Prevalence and characterization of multi-drug-resistant gram-negative bacilli isolated from Lebanese poultry: A nationwide study. Frontiers in microbiology, 9, 550. DOI: https://doi.org/10.3389/fmicb.2018.00550
Das, L., Borah, P., Sharma, R. K., Malakar, D., Saikia, G. K., Sharma, K., & Dutta, R. (2020). Phenotypic and molecular characterization of extended spectrum β-lactamase producing Escherichia coli and Klebsiella pneumoniae isolates from various samples of animal origin from Assam, India. bioRxiv, 2020-05 DOI: https://doi.org/10.1101/2020.05.28.122705
Davies, Y. M., Cunha, M. P. V., Oliveira, M. G. X., Oliveira, M. C. V., Philadelpho, N., Romero, D. C., ... & Sá, L. R. M. D. (2016). Virulence and antimicrobial resistance of Klebsiella pneumoniae isolated from passerine and psittacine birds. Avian pathology, 45(2), 194-201. DOI: https://doi.org/10.1080/03079457.2016.1142066
Effah, C. Y., Sun, T., Liu, S., & Wu, Y. (2020). Klebsiella pneumoniae: an increasing threat to public health. Annals of clinical microbiology and antimicrobials, 19(1), 1-9. DOI: https://doi.org/10.1186/s12941-019-0343-8
Ejikeugwu C, Iroha I, Duru C, Ayogu T, Orji O, Eze J, Adikwu M, Esimone C (2016). Occurrence of Metallo-Beta-Lactamase-Producing nterobacteriaceae in Abakaliki, Nigeria. International Journal of Applied Pharmaceutical Sciences and Research, 1(2):70-75 DOI: https://doi.org/10.21477/ijapsr.v1i2.10178
ESBLs, M. (2013). occurrence of ESBL and MBL Acinetobacter baumannii F. AL-Marjani.
Farhan, S. M., Ibrahim, R. A., Mahran, K. M., Hetta, H. F., & Abd El-Baky, R. M. (2019). Antimicrobial resistance pattern and molecular genetic distribution of metallo-β-lactamases producing Pseudomonas aeruginosa isolated from hospitals in Minia, Egypt. Infection and Drug Resistance, 2125-2133. DOI: https://doi.org/10.2147/IDR.S198373
Feizabadi, M. M., Etemadi, G., Yadegarinia, D., Rahmati, M., Shabanpoor, S., & Bokaei, S. (2006). Antibiotic-resistance patterns and frequency of extended-spectrum b-lactamase-producing isolates of Klebsiella pneumoniae in Tehran. Medical science monitor, 12(11), BR362-BR365.
Gharrah, M. M., Mostafa El-Mahdy, A., & Barwa, R. F. (2017). Association between virulence factors and extended spectrum beta-lactamase producing Klebsiella pneumoniae compared to nonproducing isolates. Interdisciplinary perspectives on infectious diseases, 2017. DOI: https://doi.org/10.1155/2017/7279830
Humayun, A., Siddiqui, F. M., Akram, N., Saleem, S., Ali, A., Iqbal, T., & Bokhari, H. (2018). Incidence of metallo-beta-lactamase-producing Klebsiella pneumoniae isolates from hospital setting in Pakistan. International Microbiology, 21(1-2), 73-78. DOI: https://doi.org/10.1007/s10123-018-0006-1
Iroha, I. R., Okoye, E., Osigwe, C. A., Moses, I. B., Ejikeugwu, C. P., & Nwakaeze, A. E. (2017). Isolation, phenotypic characterization and prevalence of ESBL-producing Escherichia coli and Klebsiella species from orthopedic wounds in National Orthopedic Hospital Enugu (NOHE), South East Nigeria. J Pharma Care Health Sys, 4(4), 1-5. DOI: https://doi.org/10.4172/2376-0419.1000184
Kazemian, H., Heidari, H., Ghanavati, R., Ghafourian, S., Yazdani, F., Sadeghifard, N., ... & Pakzad, I. (2019). Phenotypic and Genotypic Characterization of ESBL-, AmpC-, and Carbapenemase-Producing Klebsiella pneumoniae and Escherichia coli Isolates. Medical Principles and Practice, 28(6), 547-551. DOI: https://doi.org/10.1159/000500311
Khan, D. A., Taj, M. K., Rehman, F. U., Mustafa, M. Z., Taj, I., Muhammad, G., & Ahmed, S. (2016). Isolation and identification of Klebsiella pneumonia causal-agent of pneumoniae from urine of childrens in hospitals of Quetta city. J Bio Env Sci, 9(4), 207-12.
Khan, E., Schneiders, T., Zafar, A., Aziz, E., Parekh, A., & Hasan, R. (2010). Emergence of CTX-M Group 1-ESBL producing Klebsiella pneumonia from a tertiary care centre in Karachi, Pakistan. The Journal of Infection in Developing Countries, 4(08), 472-476. DOI: https://doi.org/10.3855/jidc.674
Khan, M. Y., Arshad, M., Mahmood, M. S., & Hussain, I. (2011). Epidemiology of Newcastle Disease in Rural Poultry in Faisalabad, Pakistan. International Journal of Agriculture & Biology, 13(4).
Khosravi, A. D., Hoveizavi, H., & Mehdinejad, M. (2013). Prevalence of Klebsiella pneumoniae encoding genes for CTX-M-1, TEM-1 and SHV-1 extended-spectrum beta lactamases (ESBL) enzymes in clinical specimens. Jundishapur Journal of Microbiology, 6(10). DOI: https://doi.org/10.5812/jjm.8256
Levy, S. B. (2013). The antibiotic paradox: how miracle drugs are destroying the miracle. Springer.
Malowany, M. S., Chester, B., & Allerhand, J. (1972). Isolation and microbiologic differentiation of Klebsiella rhinoscleromatis and Klebsiella ozaenae in cases of chronic rhinitis. American Journal of Clinical Pathology, 58(5), 550-553. DOI: https://doi.org/10.1093/ajcp/58.5.550
Mughini-Gras, L., Di Martino, G., Moscati, L., Buniolo, F., Cibin, V., & Bonfanti, L. (2020). Natural immunity in conventionally and organically reared turkeys and its relation with antimicrobial resistance. Poultry Science, 99(2), 763-771. DOI: https://doi.org/10.1016/j.psj.2019.10.027
Mushi, M. F. (2013). Carbapenems-resistance determining genes among multidrug resistance gram-negative bacterial clinical isolates. Tanzania (Master's thesis) (internet) University of Makerere.
Okoche, D., Asiimwe, B. B., Katabazi, F. A., Kato, L., & Najjuka, C. F. (2015). Prevalence and characterization of carbapenem-resistant Enterobacteriaceae isolated from Mulago National Referral Hospital, Uganda. PloS one, 10(8). DOI: https://doi.org/10.1371/journal.pone.0135745
Orajaka, L. J. E., & Mohan, K. (1985). Aerobic bacterial flora from dead-in-shell chicken embryos from Nigeria. Avian diseases, 583-589. DOI: https://doi.org/10.2307/1590649
Paczosa, M. K., & Mecsas, J. (2016). Klebsiella pneumoniae: going on the offense with a strong defense. Microbiology and molecular biology reviews, 80(3), 629-661. DOI: https://doi.org/10.1128/MMBR.00078-15
Parveen, R. M., Khan, M. A., Menezes, G. A., Harish, B. N., Parija, S. C., & Hays, J. P. (2011). Extended-spectrum β-lactamase producing Klebsiella pneumoniae from blood cultures in Puducherry, India. The Indian journal of medical research, 134(3), 392.
Paterson, D. L., & Bonomo, R. A. (2005). Extended-spectrum β-lactamases: a clinical update. Clinical microbiology reviews, 18(4), 657-686. DOI: https://doi.org/10.1128/CMR.18.4.657-686.2005
Phillips, I., Casewell, M., Cox, T., De Groot, B., Friis, C., Jones, R., & Waddell, J. (2004). Does the use of antibiotics in food animals pose a risk to human health? A critical review of published data. Journal of antimicrobial Chemotherapy, 53(1), 28-52. DOI: https://doi.org/10.1093/jac/dkg483
Rawy, D. K., El-Mokhtar, M. A., Hemida, S. K., Askora, A., & Yousef, N. (2020). Isolation, characterization and identification of Klebsiella pneumoniae from assiut university hospital and sewage water in assiut governorate, Egypt. Assiut Univ J Botany Microbiol, 49(2), 60-76. DOI: https://doi.org/10.21608/aunj.2020.221181
Shahcheraghi, F., Moezi, H., & Feizabadi, M. M. (2007). Distribution of TEM and SHV beta-lactamase genes among Klebsiella pneumoniae strains isolated from patients in Tehran. Medical Science Monitor, 13(11), BR247-BR250.
Tewari, R., Mitra, S. D., Ganaie, F., Venugopal, N., Das, S., Shome, R., & Shome, B. R. (2018). Prevalence of extended spectrum β-lactamase, AmpC β-lactamase and metallo β-lactamase mediated resistance in Escherichia coli from diagnostic and tertiary healthcare centers in south Bengaluru, India. DOI: https://doi.org/10.18203/2320-6012.ijrms20181288
Ventola CL. The antibiotic resistance crisis: part 1: causes and threats. P T. 2015 Apr;40(4):277-83. PMID: 25859123; PMCID: PMC4378521.
Worku, M., Belay, S., Molla, T. et al. Prevalence and antimicrobial susceptibility pattern of Klebsiella pneumoniae isolated from various clinical specimens at the University of Gondar Comprehensive Specialized Hospital, Northwest Ethiopia. BMC Infect Dis 24, 917 (2024). DOI: https://doi.org/10.1186/s12879-024-09811-1
Wu, M., & Li, X. (2015). Klebsiella pneumoniae and Pseudomonas aeruginosa. In Molecular medical microbiology (pp. 1547-1564). Academic Press. DOI: https://doi.org/10.1016/B978-0-12-397169-2.00087-1
Xu, H., Huo, C., Sun, Y., Zhou, Y., Xiong, Y., Zhao, Z., ... & Chen, Y. (2019). Emergence and molecular characterization of multidrug-resistant Klebsiella pneumoniae isolates harboring blaCTX-M-15 extended-spectrum β-lactamases causing ventilator-associated pneumonia in China. Infection and drug resistance, 12, 33. DOI: https://doi.org/10.2147/IDR.S189494
Yang J, Zhang K, Ding C, Wang S, Wu W, Liu X. Exploring multidrug-resistant Klebsiella pneumoniae antimicrobial resistance mechanisms through whole genome sequencing analysis. BMC Microbiol. 2023 Sep 2;23(1):245. DOI: https://doi.org/10.1186/s12866-023-02974-y
Younis, G., Awad, A., El-Gamal, A., & Hosni, R. (2016). Virulence properties and antimicrobial susceptibility profiles of Klebsiella species recovered from clinically diseased broiler chicken. Adv. Anim. Vet. Sci, 4(10), 536-542. DOI: https://doi.org/10.14737/journal.aavs/2016/4.10.536.542
Zeynudin, A., Pritsch, M., Schubert, S., Messerer, M., Liegl, G., Hoelscher, M., & Wieser, A. (2018). Prevalence and antibiotic susceptibility pattern of CTX-M type extended-spectrum β-lactamases among clinical isolates of gram-negative bacilli in Jimma, Ethiopia. BMC infectious diseases, 18(1), 524 DOI: https://doi.org/10.1186/s12879-018-3436-7
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Shahla Abid, Qudsia firdous, Shakira Mushtaque, Ayaz Ali Panhwar, Abdul Sami
This work is licensed under a Creative Commons Attribution 4.0 International License.