Exploring Fresh Lettuce (Lactuca sativa) as a Dairy-Free Probiotic Source

Authors

  • Muhammad Sufian Masued Department of Biological Sciences, University of Sialkot, Sialkot, Pakistan
  • Shams Ur Rehman Department of Computer Sciences, University of Poonch Rawalakot, AJK, Pakistan.
  • Muhamamd Musaddiq Shah Department of Biological Sciences, University of Sialkot, Sialkot, Pakistan
  • Lubna Zafar Department of Plant Pathology, University of Poonch Rawalakot, AJK, Pakistan
  • Raees Ahmed Department of Plant Pathology, University of Poonch Rawalakot, AJK, Pakistan.
  • Muhammad Tariq Khan National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, China.
  • Aqeel Ahmad Department of Agronomy, University of Poonch Rawalakot, AJK, Pakistan.
  • Muhammad jamil Department of Agronomy, University of Poonch Rawalakot, AJK, Pakistan.
  • Abdul Mateen Department of Biological Sciences, University of Sialkot, Sialkot, Pakistan.

DOI:

https://doi.org/10.38211/jms.2024.01.56

Keywords:

Probiotic, Bacteria, Lettuce, Antibiotics, rRNA, PCR

Abstract

Probiotics are living microorganisms that, when given in appropriate amounts, have optimistic effects on body. This study explores the potential of fresh lettuce (Lactuca sativa) leaves as a probiotic source for individuals with dairy allergies. Gram staining and the catalase test were used to identify the bacteria that were recovered from lettuce leaves as gram-positive, catalase-negative strains. The resistance to antibiotics and their capacity to tolerate low pH and bile salt concentrations both essential for surviving the digestive tract were evaluated. The bacteria showed a high tolerance to bile salts and low pH, but they were susceptible to ampicillin, streptomycin, gentamycin, chloramphenicol, and neomycin. Tests for gas production in the presence of glucose revealed no gas production. Molecular techniques such as PCR and 16S rRNA gene sequencing revealed the presence of Enterococcus lactis, Enterococcus durans, Lactobacillus paracasei, and Lactobacillus casei

References

Abo-Amer, A. E. (2011). Optimization of bacteriocin production by Lactobacillus acidophilus AA11, a strain isolated from Egyptian cheese. Annals of Microbiology, 61(3), 445–452. https://doi.org/10.1007/s13213-010-0157-6 DOI: https://doi.org/10.1007/s13213-010-0157-6

Anjum, F. M., et al. (2023). Optimization of conditions for the production of bacteriocins by Lactobacillus acidophilus. Journal of Food Science and Technology, 60(1), 150-159.

Azat, R., Liu, Y., Li, W., Kayir, A., Lin, D. B., Zhou, W. W., & Zheng, X. D. (2016). Probiotic properties of lactic acid bacteria isolated from traditionally fermented Xinjiang cheese. Journal of Zhejiang University Science B, 17(8), 597-609. https://doi.org/10.1631/jzus.B1500250 DOI: https://doi.org/10.1631/jzus.B1500250

Bazireh, H., et al. (2020). Probiotic properties of lactic acid bacteria isolated from traditional Iranian dairy products. Journal of Food Science and Technology, 57(12), 4233-4243.

Beveridge, T. J. (2001). Mechanism of Gram variability in select bacteria. Journal of Bacteriology, 183(16), 4764-4773.

Binda, S., Hill, C., Johansen, E., Obis, D., Pot, B., Sanders, M. E., Tremblay, A., & Ouwehand, A. C. (2020). Criteria to qualify microorganisms as “probiotic” in foods and dietary supplements. Frontiers in Microbiology, 11, 1662. https://doi.org/10.3389/fmicb.2020.01662 DOI: https://doi.org/10.3389/fmicb.2020.01662

Bommasamudram, J., Kumar, P., Kapur, S., et al. (2023). Development of thermotolerant Lactobacilli cultures with improved probiotic properties using adaptive laboratory evolution method. Probiotics & Antimicrobial Proteins, 15(3), 832–843. https://doi.org/10.1007/s12602-023-09789-8 DOI: https://doi.org/10.1007/s12602-021-09892-3

Cappuccino, J. G., & Sherman, N. (2010). Microbiology: A Laboratory Manual (7th ed.). Pearson Education in South Asia.

Corsetti, A., & Settanni, L. (2007). Lactobacilli in sourdough fermentation. Food Research International, 40(5), 539-558. DOI: https://doi.org/10.1016/j.foodres.2006.11.001

Cvrtila Fleck, Ž., Savić, V., Kozačinski, L., Njari, B., Zdolec, N., & Filipović, I. (2012). Identification of lactic acid bacteria isolated from dry fermented sausages. Veterinarski arhiv, 82(3), 265-272.

Denkova, Z., Gasharova, N., Denkova, R., & Krastanov, A. (2010). Characteristics of lactic acid bacteria strains isolated from salad dressing. Journal of Food Biotechnology, 24(1), 124-134.

Di Martino, C., et al. (2023). Halophilic lactic acid bacteria: Diversity and applications. Food Research International, 157, 112310.

Di Martino, L., Osme, A., Ghannoum, M., & Cominelli, F. (2023). A novel probiotic combination ameliorates Crohn's disease-like ileitis by increasing short-chain fatty acid production and modulating essential adaptive immune pathways. Inflammatory Bowel Diseases, 2023, izac284. https://doi.org/10.1093/ibd/izac284. DOI: https://doi.org/10.1093/ibd/izac284

Fijan, S. (2014). Microorganisms with claimed probiotic properties: an overview of recent literature. International Journal of Environmental Research and Public Health, 11(5), 4745-4767. https://doi.org/10.3390/ijerph110504745. DOI: https://doi.org/10.3390/ijerph110504745

Frieri, M., Kumar, K., & Boutin, A. (2017). Antibiotic resistance. Journal of infection and public health, 10(4), 369-378. DOI: https://doi.org/10.1016/j.jiph.2016.08.007

Gerasimidis, K., Bertz, M., Quince, C., Brunner, K., Bruce, A., & Combet, E., & Ijaz, U. Z. (2016). The effect of DNA extraction methodology on gut microbiota research applications. BMC Research Notes, 9(1), 1-10. DOI: https://doi.org/10.1186/s13104-016-2171-7

Ghazali, N. S. H., & Rashid, N. (2019). Molecular identification of bacterial communities from vegetable samples as revealed by DNA sequencing of universal primer 16S rRNA gene. International Journal of Medical Sciences, 4(1), 19-26.

Gibson, G. R., & Robust, L. A. (2011). Functional foods: probiotics and prebiotics. Culture, 28(2), 1-7.

Goyal, S., Raj, T., Banerjee, C., Imam, J., & Shukla, P. (2013). Isolation and ecological screening of indigenous probiotic microorganisms from curd and chili sauce samples. International Journal of Probiotics and Prebiotics, 8(2), 91-96.

Guarner, F., & Malagelada, J. R. (2003). Gut flora in health and disease. The Lancet, 361(9356), 512-519.

Guarner, F., & Malagelada, J. R. (2003). Gut flora in health and disease. The Lancet, 361(9356), 512-519. DOI: https://doi.org/10.1016/S0140-6736(03)12489-0

Haghshenas, B., Nami, Y., Almasi, A., Abdullah, N., Radiah, D., Rosli, R., Barzegari, A., & Khosroushahi, A. Y. (2017). Isolation and characterization of probiotics from dairies. Iranian Journal of Microbiology, 9(4), 234-243. https://doi.org/PMID: 29238459; PMCID: PMC5723976.

Hassanzadazar, H., Ehsani, A., Mardani, K., & Hesari, J. (2012). Investigation of antibacterial, acid and bile tolerance properties of lactobacilli isolated from Koozeh cheese. Veterinary Research Forum, 3(3), 181-185.

Hatami, H., et al. (2022). Diversity and applications of halophilic lactic acid bacteria in food and fermentation industries. Food Biotechnology, 36(4), 241-257.

Haytowitz, D. B., Ahuja, J. K. C., Wu, X., Somanchi, M., Nickle, M., Nguyen, Q. A., & et al. (2019). USDA National Nutrient Database for Standard Reference, Legacy Release. Nutrient Data Laboratory, Beltsville Human Nutrition Research Center, ARS, USDA. https://doi.org/10.15482/USDA.ADC/1529216

Hill, C. (2014). The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology & Hepatology, 11(8), 506-514. https://doi.org/10.1038/nrgastro.2014.66

Hill, C., et al. (2014). Expert consensus document: The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology & Hepatology, 11(8), 506-514. DOI: https://doi.org/10.1038/nrgastro.2014.66

Huang, Y., & Adams, M. C. (2004). In vitro assessment of the upper gastrointestinal tolerance of potential probiotic dairy propionibacteria. International Journal of Food Microbiology, 91(3), 253-260.

Huang, Y., & Adams, M. C. (2004). In vitro assessment of the upper gastrointestinal tolerance of potential probiotic dairy propionibacteria. International Journal of Food Microbiology, 91(3), 253-260. DOI: https://doi.org/10.1016/j.ijfoodmicro.2003.07.001

Imperial, I. C. V. J., & Ibana, J. A. (2016). Addressing the antibiotic resistance problem with probiotics: Reducing the risk of its double-edged sword effect. Frontiers in Microbiology, 7, 1983. DOI: https://doi.org/10.3389/fmicb.2016.01983

Jeyagowri, N., Parahitiyawa, N., Jeyatilake, S., Ranadheera, S., & Madhujith, T. (2015). Study on isolation of potentially probiotic Lactobacillus species from fermented rice. DOI: https://doi.org/10.4038/tar.v26i3.8106

Kechagia, M., et al. (2013). Health benefits of probiotics: A review. ISRN Nutrition, 2013, 481651. DOI: https://doi.org/10.5402/2013/481651

Kerry, R. G. (2018). Beneficial properties of probiotics. In R. R. Watson & V. R. Preedy (Eds.), Probiotics, prebiotics, and synbiotics (pp. 1-11). Academic Press. https://doi.org/10.1016/B978-0-12-802189-7.00001-1

Khedid, K., et al. (2009). Characterization of lactic acid bacteria isolated from the one-humped camel milk produced in Morocco. Microbiological Research, 164(1), 81-91. DOI: https://doi.org/10.1016/j.micres.2006.10.008

Khushboo, K., Malik, T., et al. (2023). Characterization and selection of probiotic lactic acid bacteria from different dietary sources for development of functional foods. Frontiers in Microbiology, 14, 1170725. https://doi.org/10.3389/fmicb.2023.1170725 DOI: https://doi.org/10.3389/fmicb.2023.1170725

Lebeer, S., Vanderleyden, J., & De Keersmaecker, S. C. (2008). Genes and molecules of lactobacilli supporting probiotic action. Microbiology and Molecular Biology Reviews, 72(4), 728-764. https://doi.org/10.1128/MMBR.00017-08 DOI: https://doi.org/10.1128/MMBR.00017-08

Lim, H. S., & Im, D. S. (2009). Bile salt resistance and acid tolerance of Lactobacillus fermentum strains isolated from kimchi. Korean Journal of Food Science and Technology, 41(2), 141-146.

Marco, M. L. (2017). Health benefits of fermented foods: Microbiota and beyond. Current Opinion in Biotechnology, 44, 94-102. https://doi.org/10.1016/j.copbio.2016.11.010 DOI: https://doi.org/10.1016/j.copbio.2016.11.010

Martinez, M. I., et al. (2009). Probiotics, gut microbiota, and health. Médecine et Maladies Infectieuses, 44(1), 1-8. https://doi.org/10.1016/j.medmal.2013.10.003 DOI: https://doi.org/10.1016/j.medmal.2013.10.002

McManus, A. (2020). Nutritional benefits of lettuce. Journal of Nutritional Science, 9, e35. https://doi.org/10.1017/jns.2020.31 DOI: https://doi.org/10.1017/jns.2020.31

Michalak, M., et al. (2018). The isolation and characteristics of lactic acid bacteria strains from spontaneously fermented kale juice. LWT - Food Science and Technology, 91, 492-500.

Nguyen, P.-T., Huu Thanh, N., Nguyen-Thi, T.-U., Pham, M.-N., & Nguyen, T.-T. (2024). Halophilic lactic acid bacteria — Play a vital role in the fermented food industry. Folia Microbiologica, 69, 1-17. https://doi.org/10.1007/s12223-024-01149-0 DOI: https://doi.org/10.1007/s12223-024-01149-0

Sanders, M. E., Merenstein, D. J., Reid, G., Gibson, G. R., & Rastall, R. A. (2018). Probiotics and prebiotics in intestinal health and disease: From biology to the clinic. Nature Reviews Gastroenterology & Hepatology, 15(10), 600-614. https://doi.org/10.1038/s41575-018-0060-6 DOI: https://doi.org/10.1038/s41575-019-0173-3

Shafiq, M., Bilal, H., Permana, B., Xu, D., Cai, G., Li, X., ... & Yao, F. (2023). Characterization of antibiotic resistance genes and mobile elements in extended-spectrum β-lactamase-producing Escherichia coli strains isolated from hospitalized patients in Guangdong, China. Journal of Applied Microbiology, 134(7), lxad125. DOI: https://doi.org/10.1093/jambio/lxad125

Szutowska J, Gwiazdowska D. Probiotic potential of lactic acid bacteria obtained from fermented curly kale juice. Arch Microbiol. (2021) Apr;203(3):975-988. doi: 10.1007/s00203-020-02095-4. Epub 2020 Oct 26. Erratum in: Arch Microbiol. 2021 Aug;203(6):3737. doi: 10.1007/s00203-021-02340-4. PMID: 33104821; PMCID: PMC7965858.

Szutowska, J., & Gwiazdowska, D. (2021). Probiotic potential of lactic acid bacteria obtained from fermented curly kale juice. Archives of Microbiology, 203(3), 975–988. https://doi.org/10.1007/s00203-020-02095-4 DOI: https://doi.org/10.1007/s00203-020-02095-4

Yang, Xiao & Gil, María & Yang, Qichang & Tomás-Barberán, Francisco. (2021). Bioactive compounds in lettuce: Highlighting the benefits to human health and impacts of preharvest and postharvest practices. Comprehensive Reviews in Food Science and Food Safety. 21. 10.1111/1541-4337.12877. DOI: https://doi.org/10.1111/1541-4337.12877

Yu, J., et al. (2018). Antioxidant properties of lactic acid bacteria from fermented vegetables. Food Science and Biotechnology, 27(2), 359-365.

Zhou, N., Zhang, J. X., Fan, M. T., Wang, J., Guo, G., & Wei, X. Y. (2012). Antibiotic resistance of lactic acid bacteria isolated from Chinese yogurts. Journal of Dairy Science, 95(9), 4775-4783. https://doi.org/10.3168/jds.2011-5267 DOI: https://doi.org/10.3168/jds.2011-5271

Downloads

Published

2024-10-29

How to Cite

Masued, M. S., Rehman, S. U., Shah, M. M., Zafar, L., Ahmed, R. ., Khan, M. T., … Mateen, A. (2024). Exploring Fresh Lettuce (Lactuca sativa) as a Dairy-Free Probiotic Source. Journal of Microbiological Sciences, 3(01), In-press. https://doi.org/10.38211/jms.2024.01.56