Comparative Assessment of Microbial Community in Compost Samples
DOI:
https://doi.org/10.38211/jms.2025.04.89Keywords:
Microbial Isolation, Compost, DiversityAbstract
Soil, composed of inorganic and organic materials, supports diverse microbial communities, including bacteria, fungi, and yeasts, which play essential roles in compost formation. Composting is a controlled biodegradation process that converts organic waste into a nutrient-rich soil conditioner. This study aimed to compare the microbial diversity and density in two compost samples (S1 and S2) prepared on campus. Sample S1 consisted of poultry waste, vegetable waste, and fruit waste, whereas Sample S2 was composed of vegetable waste and cow dung. Microbial isolation was performed using serial dilution, spread plate, and streak plate techniques. A total of 23 microbial isolates were obtained, including 12 bacterial, 6 fungal, and 5 yeast isolates. Bacterial density was significantly higher in S1 compared to S2, suggesting a potential influence of compost composition on microbial proliferation. Identified bacterial genera included Aeromonas, Staphylococcus aureus, Pseudomonas, Edwardsiella, Salmonella, Klebsiella, Shigella, and Streptococcus sp. Fungal isolates comprised Rhizopus sp., Aspergillus sp., Fusarium sp., and Helminthosporium sp., while yeast genera included Saccharomyces, Candida, and Cryptococcus. The comparative analysis highlights the impact of compost composition on microbial diversity and suggests that poultry and fruit waste may enhance bacterial density more than cow dung-based compost. These findings provide insights into microbial contributions to compost stability and potential applications in soil conditioning and nutrient solubilization.
References
Chamberlain, N. R. (2009). Coagulase Test for Staphylococcus Species.
Chauhan, A., & Jindal, T. (2020). Biochemical and Molecular Methods for Bacterial Identification (pp. 425–468). DOI: https://doi.org/10.1007/978-3-030-52024-3_10
Cuesta, G., García-de-la-Fuente, R., Abad, M., & Fornes, F. (2012). Isolation and identification of actinomycetes from a compost-amended soil with potential as biocontrol agents. Journal of Environmental Management, 95, S280-S284. DOI: https://doi.org/10.1016/j.jenvman.2010.11.023
Ezeagu, G. G., Sanusi, U. R., Wali, U. M., & Mohammed, S. S. D. (2024). Determination of cellulolytic potentials of Aspergillus species isolated from central waste dump site of Nile University of Nigeria. The Scientific World Journal. DOI: https://doi.org/10.4314/swj.v18i4.13
Fröhlich, J., & König, H. (2006). Micromanipulation Techniques for the Isolation of Single Microorganisms (pp. 425–437). Springer, Berlin, Heidelberg. DOI: https://doi.org/10.1007/3-540-28185-1_18
Gaddeyya, G., Niharika, P. S., Bharathi, P., & Kumar, P. R. (2012). Isolation and identification of soil mycoflora in different crop fields at Salur Mandal. Advances in Applied Science Research, 3(4), 2020-2026.
Giri, B., Giang, P. H., Kumari, R., Prasad, R., & Varma, A. (2005). Microbial diversity in soils. Microorganisms in soils: roles in genesis and functions, 19- 55. DOI: https://doi.org/10.1007/3-540-26609-7_2
Istifadah, N., Putri, R. A., Widiantini, F., & Hartati, S. (2021). The Potential of Fungal Isolates from Vermicompost Water Extract to Inhibit Alternaria solani in Vitro and Suppress Early Blight Disease in Tomato. 46–50. DOI: https://doi.org/10.2991/absr.k.210609.008
Khater, E. S. G. (2015). Some physical and chemical properties of compost. Int. J. Waste Resour, 5(1), 72-79. DOI: https://doi.org/10.4172/2252-5211.1000172
Kirk, J. L., Beaudette, L. A., Hart, M., Moutoglis, P., Klironomos, J. N., Lee, H., & Trevors, J. T. (2004). Methods of studying soil microbial diversity. Journal of microbiological methods, 58(2), 169-188. DOI: https://doi.org/10.1016/j.mimet.2004.04.006
Miao, Y.-C., Li, J., Li, Y., Niu, Y., He, T., Liu, D., & Ding, W. (2022). Long-Term Compost Amendment Spurs Cellulose Decomposition by Driving Shifts in Fungal Community Composition and Promoting Fungal Diversity and Phylogenetic Relatedness. Mbio, 13(3). DOI: https://doi.org/10.1128/mbio.00323-22
Microbial techniques and methods: basic techniques and microscopy (pp. 201–220). (2022). Elsevier eBooks. DOI: https://doi.org/10.1016/B978-0-12-822654-4.00003-8
Mladenov, M. (2018). Chemical composition of different types of compost. Journal of Chemical Technology and Metallurgy, 53(4), 712-716.
Nariyampet, S. A., Raman, S., & Madar Pakir, A. W. (2022). Isolation of an ascomycota fungus from soil and its identification using dna barcode. Journal of Advanced Scientific Research, 13(04), 19–22. DOI: https://doi.org/10.55218/JASR.202213403
Oda, O., & Mohammed, A. (2024). Isolation and Identification of Yeasts from Tomato (Solanum lycopersicum) Fruit and Cassava (Manihot esculenta) Tuber. Sahel Journal of Life Sciences FUDMA, 2(2), 117–121. DOI: https://doi.org/10.33003/sajols-2024-0202-15
Patra, J. K., Das, G., Das, S. K., & Thatoi, H. (2020). Isolation, Culture, and Biochemical Characterization of Microbes (pp. 83–133). Springer, Singapore. DOI: https://doi.org/10.1007/978-981-15-6252-5_4
Raja, M., G. Praveena and John William, S., (2017). Isolation and Identification of Fungi from Soil in Loyola College Campus, Chennai, India. Int.J.Curr.Microbiol.App.Sci. 6(2): 1789-1795 DOI: https://doi.org/10.20546/ijcmas.2017.602.200
Roy, D., Gunri, S. K., Neogi, S., Ali, O., Sharma, J., Bhadu, A., & Singh, B. (2022). Effect of Microbes in Enhancing the Composting Process: A Review. International Journal of Plant and Soil Science, 630–641. DOI: https://doi.org/10.9734/ijpss/2022/v34i232469
Saini, N., Dhyani, S., & Dimri, D. (2016). Isolation and identification of fungi from soil sample of different localities of agricultural land in Dehradun. Biotechnology, 5(2).
Sarwari, A., Abdieva, G. Z., Hassand, M. H., Kakar Mohammad, U., & Niazi, P. (2024). Role of Microbial Communities in Compost and Plant Growth: Structure and Function. DOI: https://doi.org/10.59324/ejtas.2024.2(2).03
Shoaib, M., Muzammil, I., Hammad, M., Bhutta, Z. A., & Yaseen, I. (2020). A Mini-Review on Commonly used Biochemical Tests for Identification of Bacteria. International Journal of Research Publications, 54(1), 8. DOI: https://doi.org/10.47119/IJRP100541620201224
Spread plate method of the bacterial cells (pp. 167–169). (2023). DOI: https://doi.org/10.1016/B978-0-443-19174-9.00038-6
Taneja, T., Kumar, M., Sharma, I., Sharma, A. P., & Singh, R. (2023). The Role of Mycobiota in the Process of Composting of Biomass and Assessment. Bulletin of Pure and Applied Sciences Sec.B - Botany, 42(1), 19–26. DOI: https://doi.org/10.48165/bpas.2023.42B.1.4
Temporiti, M. E. E., Daccò, C., & Nicola, L. (2022). Isolation and Screening from Soil Biodiversity for Fungi Involved in the Degradation of Recalcitrant Materials. Journal of Visualized Experiments, 183(183). DOI: https://doi.org/10.3791/63445-v
Termorshuizen, A. J., Moolenaar, S. W., Veeken, A. H. M., & Blok, W. J. (2004). The value of compost. Reviews in Environmental Science and Bio/Technology, 3, 343-347. DOI: https://doi.org/10.1007/s11157-004-2333-2
Thapa, Sandeep & Shrestha, Rajani & Tirewal, Anjali & Sharma, Arjun & KC, Yuvraj. (2015). Isolation of yeast from soil and different food samples and its characterization based on fermentation. Nepal Journal of Biotechnology. 3;(14226) DOI: https://doi.org/10.3126/njb.v3i1.14226
Vashist, H., Sharma, D., & Gupta, A. (2013). A review on commonly used biochemical test for bacteria. Journal of Life Sciences, 1(1), 1–7.
Wan, J., Wang, X., Yang, T., Wei, Z., Banerjee, S., Friman, V.-P., Friman, V.-P., Mei, X., Xu, Y., & Shen, Q. (2021). Livestock Manure Type Affects Microbial Community Composition and Assembly During Composting. Frontiers in Microbiology, 12, 621126. DOI: https://doi.org/10.3389/fmicb.2021.621126
Witfeld, F., Begerow, D., & Guerreiro, M. A. (2021). Improved strategies to efficiently isolate thermophilic, thermotolerant, and heat-resistant fungi from compost and soil. Mycological Progress, 20(3), 325–339. DOI: https://doi.org/10.1007/s11557-021-01674-z
Zhu, L., Wang, X., Liu, L., Le, B., & Dong, C. (2024). Fungi play a crucial role in sustaining microbial networks and accelerating organic matter mineralization and humification during thermophilic phase of composting. Environmental Research, 119155. DOI: https://doi.org/10.1016/j.envres.2024.119155
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Noor Ul Huda Kiani, Saba Farooq, Raees Ahmed, Basharat Mahmood

This work is licensed under a Creative Commons Attribution 4.0 International License.