Foliar Application of Iron Fortified Bacterio-siderophore And Rhizobium Seed Inoculation Promote Growth and Grain Fe Contents in Soybean and Chickpea
DOI:
https://doi.org/10.38211/jms.2024.01.70Keywords:
Bacteriosiderophore, iron, Bacillus megaterium, chickpea, soybeanAbstract
Iron (Fe)is one of the principle micronutrients critical for plant development and grain quality. Chickpea (Cicer aeritum) and soybean (Glycine max) are vital leguminous crops known for high protein contents in grain. But quality of grain is affected due to low level of available Fe content. Application of Fe-enriched bacteriosiderophore through foliar spray might increase Fe content in grain and improve its quality. Therefore, present study was conducted to explore the interactive effect of rhizobium application as seed inoculation and bacteriosiderophore as foliar spray on growth and yield parameters of legume crops. Rhizobium sp. from chickpea nodules was selected for seed inoculation and bacillus megaterium as foliar spray on the basis of amount of siderophore produced. Their synergestic effect was tested on field grown chickpea and soybean crops by applying bacteriosiderophore with or without inorganic Fe addition on foliage at flowering stage. Data regarding plant height, No. of nodules after a week of spray and pods per plant, grain yield, N, P uptake and grain Fe contents were recorded at time of harvest. The data of grain quality showed more improvement in iron contents in soybean (1.44 fold) and chickpea (4.07 fold) as compared to control (water) with synergistic effect of rhizobium and bacterio-siderophore. Maximum plant height, No. of nodules and pods were observed in combined application of bacteriosiderophore enriched with iron and rhizobium. Similarly, maximum chickpea grain yield of 2.16 and 1.6-fold in soybean produced where coinoculation of seed with rhizobium and foliar bacteriosiderophore was done. Thus, it was observed that foliar implantation of siderophore containing bacteria with added Fe could be an economical approach towards Fe fortification in leguminous crop plants grown on alkaline calcareous soil
References
Abd-Alla, M. H., Al-Amri, S. M., & El-Enany, A.-W. E. (2023). Enhancing Rhizobium–Legume Symbiosis and Reducing Nitrogen Fertilizer Use Are Potential Options for Mitigating Climate Change. Agriculture, 13(11), 2092. DOI: https://doi.org/10.3390/agriculture13112092
Ammendola, S., Secli, V., Pacello, F., Bortolami, M., Pandolfi, F., Messore, A., . . . Battistoni, A. (2021). Salmonella typhimurium and Pseudomonas aeruginosa respond differently to the Fe chelator deferiprone and to some novel deferiprone derivatives. International journal of molecular sciences, 22(19), 10217. DOI: https://doi.org/10.3390/ijms221910217
Banti, M., & Bajo, W. (2020). Review on nutritional importance and anti-nutritional factors of legumes. Int. J. Food Sci. Nutr, 9(13), 8-49. DOI: https://doi.org/10.11648/j.ijnfs.20200906.11
Barbieri, P., Starck, T., Voisin, A.-S., & Nesme, T. (2023). Biological nitrogen fixation of legumes crops under organic farming as driven by cropping management: A review. Agricultural Systems, 205, 103579. DOI: https://doi.org/10.1016/j.agsy.2022.103579
Butler, A., Harder, T., Ostrowski, A. D., & Carrano, C. J. (2021). Photoactive siderophores: structure, function and biology. Journal of Inorganic Biochemistry, 221, 111457. DOI: https://doi.org/10.1016/j.jinorgbio.2021.111457
Byers, B., Powell, M., & Lankford, C. (1967). Iron-chelating hydroxamic acid (schizokinen) active in initiation of cell division in Bacillus megaterium. Journal of Bacteriology, 93(1), 286-294. DOI: https://doi.org/10.1128/jb.93.1.286-294.1967
Checa-Fernandez, A., Santos, A., Romero, A., & Dominguez, C. M. (2021). Application of chelating agents to enhance fenton process in soil remediation: A review. Catalysts, 11(6), 722. DOI: https://doi.org/10.3390/catal11060722
Chen, W., Li, J., Yuan, H., You, L., Wei, Q., Feng, R., . . . Zhao, X. (2023). Plant growth regulators improve nitrogen metabolism, yield, and quality of soybean–rhizobia symbiosis. Annals of Microbiology, 73(1), 15. DOI: https://doi.org/10.1186/s13213-023-01721-y
Church, D. L., Cerutti, L., Gürtler, A., Griener, T., Zelazny, A., & Emler, S. (2020). Performance and application of 16S rRNA gene cycle sequencing for routine identification of bacteria in the clinical microbiology laboratory. Clinical microbiology reviews, 33(4), 10.1128/cmr. 00053-00019. DOI: https://doi.org/10.1128/CMR.00053-19
Daniel, A. I., Fadaka, A. O., Gokul, A., Bakare, O. O., Aina, O., Fisher, S., . . . Klein, A. (2022). Biofertilizer: the future of food security and food safety. Microorganisms, 10(6), 1220. DOI: https://doi.org/10.3390/microorganisms10061220
Drechsel, H., & Winkelmann, G. (2022). Iron chelation and siderophores Transition metals in microbial metabolism (pp. 1-49): CRC Press. DOI: https://doi.org/10.1201/9781003211129-1
Ehsan, S., Riaz, A., Qureshi, M. A., Ali, A., Saleem, I., Aftab, M., . . . Javed, H. (2022). Isolation, purification and application of siderophore producing bacteria to improve wheat growth. Pakistan Journal of Agricultural Research, 35(2), 449-459. DOI: https://doi.org/10.17582/journal.pjar/2022/35.2.449.459
Esitken, A., Karlidag, H., Ercisli, S., & Sahin, F. (2002). Effects of foliar application of Bacillus subtilis Osu-142 on the yield, growth and control of shot-hole disease (Coryneum blight) of apricot. Gartenbauwissenschaft, 67(4), 139-142.
Ghosh, S. K., Bera, T., & Chakrabarty, A. M. (2020). Microbial siderophore–A boon to agricultural sciences. Biological Control, 144, 104214. DOI: https://doi.org/10.1016/j.biocontrol.2020.104214
Hafezi Ghehestani, M. M., Azari, A., Rahimi, A., Maddah-Hosseini, S., & Ahmadi-Lahijani, M. J. (2021). Bacterial siderophore improves nutrient uptake, leaf physiochemical characteristics, and grain yield of cumin (Cuminum cyminum L.) ecotypes. Journal of Plant Nutrition, 44(12), 1794-1806. DOI: https://doi.org/10.1080/01904167.2021.1884703
Khasheii, B., Mahmoodi, P., & Mohammadzadeh, A. (2021). Siderophores: Importance in bacterial pathogenesis and applications in medicine and industry. Microbiological Research, 250, 126790. DOI: https://doi.org/10.1016/j.micres.2021.126790
Koirala, S., Dhakal, A., Niraula, D., Bartaula, S., Panthi, U., & Mahato, M. (2020). Effects of row spacings and varieties on grain yield and economics of maize. Journal of Agriculture and Natural Resources, 3(1), 209-218. DOI: https://doi.org/10.3126/janr.v3i1.27174
Malhotra, H., Pandey, R., Sharma, S., & Bindraban, P. S. (2020). Foliar fertilization: possible routes of iron transport from leaf surface to cell organelles. Archives of Agronomy and Soil Science, 66(3), 279-300. DOI: https://doi.org/10.1080/03650340.2019.1616288
Meena, V. S., Meena, S. K., Verma, J. P., Kumar, A., Aeron, A., Mishra, P. K., . . . Dotaniya, M. (2017). Plant beneficial rhizospheric microorganism (PBRM) strategies to improve nutrients use efficiency: a review. Ecological Engineering, 107, 8-32. DOI: https://doi.org/10.1016/j.ecoleng.2017.06.058
Merry, R., Dobbels, A. A., Sadok, W., Naeve, S., Stupar, R. M., & Lorenz, A. J. (2022). Iron deficiency in soybean. Crop Science, 62(1), 36-52. DOI: https://doi.org/10.1002/csc2.20661
Meyer, J. a., & Abdallah, M. (1978). The fluorescent pigment of Pseudomonas fluorescens: biosynthesis, purification and physicochemical properties. Microbiology, 107(2), 319-328. DOI: https://doi.org/10.1099/00221287-107-2-319
Mir, M. I., Kumar, B. K., Gopalakrishnan, S., Vadlamudi, S., & Hameeda, B. (2021). Characterization of rhizobia isolated from leguminous plants and their impact on the growth of ICCV 2 variety of chickpea (Cicer arietinum L.). Heliyon, 7(11). DOI: https://doi.org/10.1016/j.heliyon.2021.e08321
Molnár, Z., Solomon, W., Mutum, L., & Janda, T. (2023). Understanding the mechanisms of Fe deficiency in the rhizosphere to promote plant resilience. Plants, 12(10), 1945. DOI: https://doi.org/10.3390/plants12101945
Mushtaq, Z., Asghar, H. N., & Zahir, Z. A. (2021). Comparative growth analysis of okra (Abelmoschus esculentus) in the presence of PGPR and press mud in chromium contaminated soil. Chemosphere, 262, 127865. DOI: https://doi.org/10.1016/j.chemosphere.2020.127865
Mutlu, A. (2021). The effect of organic fertilizers on grain yield and some yield components of barley (Hordeum vulgare L.). Fresenius Environmental Bulletin, 29(12), 10840-10846.
Naveed, M., Mitter, B., Reichenauer, T. G., Wieczorek, K., & Sessitsch, A. (2014). Increased drought stress resilience of maize through endophytic colonization by Burkholderia phytofirmans PsJN and Enterobacter sp. FD17. Environmental and Experimental Botany, 97, 30-39. DOI: https://doi.org/10.1016/j.envexpbot.2013.09.014
Prasad, R., & Shivay, Y. S. (2020). Agronomic biofortification of plant foods with minerals, vitamins and metabolites with chemical fertilizers and liming. Journal of Plant Nutrition, 43(10), 1534-1554. DOI: https://doi.org/10.1080/01904167.2020.1738464
Radhakrishnan, R., & Lee, I.-J. (2017). Foliar treatment of Bacillus methylotrophicus KE2 reprograms endogenous functional chemicals in sesame to improve plant health. Indian journal of microbiology, 57, 409-415. DOI: https://doi.org/10.1007/s12088-017-0666-0
Santoyo, G., Urtis-Flores, C. A., Loeza-Lara, P. D., Orozco-Mosqueda, M. d. C., & Glick, B. R. (2021). Rhizosphere colonization determinants by plant growth-promoting rhizobacteria (PGPR). Biology, 10(6), 475. DOI: https://doi.org/10.3390/biology10060475
Senthilkumar, M., Amaresan, N., Sankaranarayanan, A., Senthilkumar, M., Amaresan, N., & Sankaranarayanan, A. (2021). Quantitative estimation of siderophore production by microorganisms: Springer. DOI: https://doi.org/10.1007/978-1-0716-1080-0_48
Shahwar, D., Mushtaq, Z., Mushtaq, H., Alqarawi, A. A., Park, Y., Alshahrani, T. S., & Faizan, S. (2023). Role of microbial inoculants as bio fertilizers for improving crop productivity: A review. Heliyon, 9(6). DOI: https://doi.org/10.1016/j.heliyon.2023.e16134
Sharma, S., Chandra, S., Kumar, A., Bindraban, P., Saxena, A. K., Pande, V., & Pandey, R. (2019). Foliar application of iron fortified bacteriosiderophore improves growth and grain Fe concentration in wheat and soybean. Indian journal of microbiology, 59, 344-350. DOI: https://doi.org/10.1007/s12088-019-00810-4
Sharma, S., Singh, S., Rai, A., Yadav, B., & Singh, S. (2022). Effect of Different Doses of Iron Chelate on Plant Growth and in Preventing Iron Deficiency Chlorosis in Soybean. International Journal of Environment and Climate Change, 12(11), 2989-2996. DOI: https://doi.org/10.9734/ijecc/2022/v12i111344
Smith, M., & Neilands, J. (1984). Rhizobactin, a siderophore from Rhizobium meliloti. Journal of Plant Nutrition, 7(1-5), 449-458. DOI: https://doi.org/10.1080/01904168409363211
Smith, M. J., Shoolery, J., Schwyn, B., Holden, I., & Neilands, J. (1985). Rhizobactin, a structurally novel siderophore from Rhizobium meliloti. Journal of the American Chemical Society, 107(6), 1739-1743. DOI: https://doi.org/10.1021/ja00292a047
Solouki, H., Kafi, M., Nabati, J., Ahmadi, M. J., Nezami, A., & Ahmady, R. S. (2023). Seed biopriming and plant growth-promoting bacteria improve nutrient absorption and dry matter production of fenugreek (Trigonella foenum-graecum) plants. South African Journal of Botany, 162, 296-303. DOI: https://doi.org/10.1016/j.sajb.2023.09.014
Storey, E., Boghozian, R., Little, J. L., Lowman, D. W., & Chakraborty, R. (2006). Characterization of ‘Schizokinen’; a dihydroxamate-type siderophore produced by Rhizobium leguminosarum IARI 917. Biometals, 19, 637-649. DOI: https://doi.org/10.1007/s10534-006-9001-7
Tariq, M., Tahreem, N., Zafar, M., Raza, G., Shahid, M., Zunair, M., . . . Zahra, S. T. (2024). Occurrence of diverse plant growth promoting bacteria in soybean [Glycine max (L.) Merrill] root nodules and their prospective role in enhancing crop yield. Biocatalysis and Agricultural Biotechnology, 57, 103072. DOI: https://doi.org/10.1016/j.bcab.2024.103072
Timofeeva, A. M., Galyamova, M. R., & Sedykh, S. E. (2022). Bacterial siderophores: Classification, biosynthesis, perspectives of use in agriculture. Plants, 11(22), 3065. DOI: https://doi.org/10.3390/plants11223065
Vélez-Bermúdez, I. C., & Schmidt, W. (2022). How plants recalibrate cellular iron homeostasis. Plant and Cell Physiology, 63(2), 154-162. DOI: https://doi.org/10.1093/pcp/pcab166
Vocciante, M., Grifoni, M., Fusini, D., Petruzzelli, G., & Franchi, E. (2022). The role of plant growth-promoting rhizobacteria (PGPR) in mitigating plant’s environmental stresses. Applied Sciences, 12(3), 1231. DOI: https://doi.org/10.3390/app12031231
Zahir, Z. A., Ahmad, M., Hilger, T. H., Dar, A., Malik, S. R., Abbas, G., & Rasche, F. (2018). Field evaluation of multistrain biofertilizer for improving the productivity of different mungbean genotypes. Soil & Environment, 37(1). DOI: https://doi.org/10.25252/SE/17/61488
Zhang, H., Rush, Z., Penn, Z., Dunn, K., Asmus, S., Cooke, C., . . . Morris, C. (2024). Films Floating on Water Surface: Coupled Redox Cycling of Iron Species (Fe (III)/Fe (II)) at Soil/Water and Water/Air Interfaces. Water, 16(9), 1298. DOI: https://doi.org/10.3390/w16091298
Zhang, R., Zhang, W., Kang, Y., Shi, M., Yang, X., Li, H., . . . Qin, S. (2022). Application of different foliar iron fertilizers for improving the photosynthesis and tuber quality of potato (Solanum tuberosum L.) and enhancing iron biofortification. Chemical and Biological Technologies in Agriculture, 9(1), 79. DOI: https://doi.org/10.1186/s40538-022-00346-8
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Shabana Ehsan, Swebba Waheed, Aleem Sarwar, Neelam Chaudhary, Waqas Ashraf, Quais Affan, Faraz Anwar, Hafsa Zafar, Amar Iqbal Saqib
This work is licensed under a Creative Commons Attribution 4.0 International License.