Foliar Application of Iron Fortified Bacterio-siderophore And Rhizobium Seed Inoculation Promote Growth and Grain Fe Contents in Soybean and Chickpea

Authors

  • Shabana Ehsan soil bacteriology section, ayub agricultural research institute, Faisalabad
  • Swebba Waheed Government College University, Faisalabad
  • Aleem Sarwar Soil and water testing laboratory, Faisalabad
  • Neelam Chaudhary University of Agriculture, Faisalabad
  • Waqas Ashraf Soil and water testing laboratory, Faisalabad
  • Quais Affan Soil and water testing laboratory, Faisalabad
  • Faraz Anwar Soil and water testing laboratory, Faisalabad
  • Hafsa Zafar Soil and water testing laboratory, Faisalabad,Soil and water testing laboratory, Faisalabad
  • Amar Iqbal Saqib Soil and water testing laboratory, Faisalabad

DOI:

https://doi.org/10.38211/jms.2024.01.70

Keywords:

Bacteriosiderophore, iron, Bacillus megaterium, chickpea, soybean

Abstract

Iron (Fe)is one of the principle micronutrients critical for plant development and grain quality. Chickpea (Cicer aeritum) and soybean (Glycine max) are vital leguminous crops known for high protein contents in grain. But quality of grain is affected due to low level of available Fe content. Application of Fe-enriched bacteriosiderophore through foliar spray might increase Fe content in grain and improve its quality. Therefore, present study was conducted to explore the interactive effect of rhizobium application as seed inoculation and bacteriosiderophore as foliar spray on growth and yield parameters of legume crops. Rhizobium sp. from chickpea nodules was selected for seed inoculation and bacillus megaterium as foliar spray on the basis of amount of siderophore produced.  Their synergestic effect was tested on field grown chickpea and soybean crops by applying bacteriosiderophore with or without inorganic Fe addition on foliage at flowering stage. Data regarding plant height, No. of nodules after a week of spray and pods per plant, grain yield, N, P uptake and grain Fe contents were recorded at time of harvest. The data of grain quality showed more improvement in iron contents in soybean (1.44 fold) and chickpea (4.07 fold) as compared to control (water) with synergistic effect of rhizobium and bacterio-siderophore. Maximum plant height, No. of nodules and pods were observed in combined application of bacteriosiderophore enriched with iron and rhizobium. Similarly, maximum chickpea grain yield of 2.16 and 1.6-fold in soybean produced where coinoculation of seed with rhizobium and foliar bacteriosiderophore was done. Thus, it was observed that foliar implantation of siderophore containing bacteria with added Fe could be an economical approach towards Fe fortification in leguminous crop plants grown on alkaline calcareous soil

References

Abd-Alla, M. H., Al-Amri, S. M., & El-Enany, A.-W. E. (2023). Enhancing Rhizobium–Legume Symbiosis and Reducing Nitrogen Fertilizer Use Are Potential Options for Mitigating Climate Change. Agriculture, 13(11), 2092. DOI: https://doi.org/10.3390/agriculture13112092

Ammendola, S., Secli, V., Pacello, F., Bortolami, M., Pandolfi, F., Messore, A., . . . Battistoni, A. (2021). Salmonella typhimurium and Pseudomonas aeruginosa respond differently to the Fe chelator deferiprone and to some novel deferiprone derivatives. International journal of molecular sciences, 22(19), 10217. DOI: https://doi.org/10.3390/ijms221910217

Banti, M., & Bajo, W. (2020). Review on nutritional importance and anti-nutritional factors of legumes. Int. J. Food Sci. Nutr, 9(13), 8-49. DOI: https://doi.org/10.11648/j.ijnfs.20200906.11

Barbieri, P., Starck, T., Voisin, A.-S., & Nesme, T. (2023). Biological nitrogen fixation of legumes crops under organic farming as driven by cropping management: A review. Agricultural Systems, 205, 103579. DOI: https://doi.org/10.1016/j.agsy.2022.103579

Butler, A., Harder, T., Ostrowski, A. D., & Carrano, C. J. (2021). Photoactive siderophores: structure, function and biology. Journal of Inorganic Biochemistry, 221, 111457. DOI: https://doi.org/10.1016/j.jinorgbio.2021.111457

Byers, B., Powell, M., & Lankford, C. (1967). Iron-chelating hydroxamic acid (schizokinen) active in initiation of cell division in Bacillus megaterium. Journal of Bacteriology, 93(1), 286-294. DOI: https://doi.org/10.1128/jb.93.1.286-294.1967

Checa-Fernandez, A., Santos, A., Romero, A., & Dominguez, C. M. (2021). Application of chelating agents to enhance fenton process in soil remediation: A review. Catalysts, 11(6), 722. DOI: https://doi.org/10.3390/catal11060722

Chen, W., Li, J., Yuan, H., You, L., Wei, Q., Feng, R., . . . Zhao, X. (2023). Plant growth regulators improve nitrogen metabolism, yield, and quality of soybean–rhizobia symbiosis. Annals of Microbiology, 73(1), 15. DOI: https://doi.org/10.1186/s13213-023-01721-y

Church, D. L., Cerutti, L., Gürtler, A., Griener, T., Zelazny, A., & Emler, S. (2020). Performance and application of 16S rRNA gene cycle sequencing for routine identification of bacteria in the clinical microbiology laboratory. Clinical microbiology reviews, 33(4), 10.1128/cmr. 00053-00019. DOI: https://doi.org/10.1128/CMR.00053-19

Daniel, A. I., Fadaka, A. O., Gokul, A., Bakare, O. O., Aina, O., Fisher, S., . . . Klein, A. (2022). Biofertilizer: the future of food security and food safety. Microorganisms, 10(6), 1220. DOI: https://doi.org/10.3390/microorganisms10061220

Drechsel, H., & Winkelmann, G. (2022). Iron chelation and siderophores Transition metals in microbial metabolism (pp. 1-49): CRC Press. DOI: https://doi.org/10.1201/9781003211129-1

Ehsan, S., Riaz, A., Qureshi, M. A., Ali, A., Saleem, I., Aftab, M., . . . Javed, H. (2022). Isolation, purification and application of siderophore producing bacteria to improve wheat growth. Pakistan Journal of Agricultural Research, 35(2), 449-459. DOI: https://doi.org/10.17582/journal.pjar/2022/35.2.449.459

Esitken, A., Karlidag, H., Ercisli, S., & Sahin, F. (2002). Effects of foliar application of Bacillus subtilis Osu-142 on the yield, growth and control of shot-hole disease (Coryneum blight) of apricot. Gartenbauwissenschaft, 67(4), 139-142.

Ghosh, S. K., Bera, T., & Chakrabarty, A. M. (2020). Microbial siderophore–A boon to agricultural sciences. Biological Control, 144, 104214. DOI: https://doi.org/10.1016/j.biocontrol.2020.104214

Hafezi Ghehestani, M. M., Azari, A., Rahimi, A., Maddah-Hosseini, S., & Ahmadi-Lahijani, M. J. (2021). Bacterial siderophore improves nutrient uptake, leaf physiochemical characteristics, and grain yield of cumin (Cuminum cyminum L.) ecotypes. Journal of Plant Nutrition, 44(12), 1794-1806. DOI: https://doi.org/10.1080/01904167.2021.1884703

Khasheii, B., Mahmoodi, P., & Mohammadzadeh, A. (2021). Siderophores: Importance in bacterial pathogenesis and applications in medicine and industry. Microbiological Research, 250, 126790. DOI: https://doi.org/10.1016/j.micres.2021.126790

Koirala, S., Dhakal, A., Niraula, D., Bartaula, S., Panthi, U., & Mahato, M. (2020). Effects of row spacings and varieties on grain yield and economics of maize. Journal of Agriculture and Natural Resources, 3(1), 209-218. DOI: https://doi.org/10.3126/janr.v3i1.27174

Malhotra, H., Pandey, R., Sharma, S., & Bindraban, P. S. (2020). Foliar fertilization: possible routes of iron transport from leaf surface to cell organelles. Archives of Agronomy and Soil Science, 66(3), 279-300. DOI: https://doi.org/10.1080/03650340.2019.1616288

Meena, V. S., Meena, S. K., Verma, J. P., Kumar, A., Aeron, A., Mishra, P. K., . . . Dotaniya, M. (2017). Plant beneficial rhizospheric microorganism (PBRM) strategies to improve nutrients use efficiency: a review. Ecological Engineering, 107, 8-32. DOI: https://doi.org/10.1016/j.ecoleng.2017.06.058

Merry, R., Dobbels, A. A., Sadok, W., Naeve, S., Stupar, R. M., & Lorenz, A. J. (2022). Iron deficiency in soybean. Crop Science, 62(1), 36-52. DOI: https://doi.org/10.1002/csc2.20661

Meyer, J. a., & Abdallah, M. (1978). The fluorescent pigment of Pseudomonas fluorescens: biosynthesis, purification and physicochemical properties. Microbiology, 107(2), 319-328. DOI: https://doi.org/10.1099/00221287-107-2-319

Mir, M. I., Kumar, B. K., Gopalakrishnan, S., Vadlamudi, S., & Hameeda, B. (2021). Characterization of rhizobia isolated from leguminous plants and their impact on the growth of ICCV 2 variety of chickpea (Cicer arietinum L.). Heliyon, 7(11). DOI: https://doi.org/10.1016/j.heliyon.2021.e08321

Molnár, Z., Solomon, W., Mutum, L., & Janda, T. (2023). Understanding the mechanisms of Fe deficiency in the rhizosphere to promote plant resilience. Plants, 12(10), 1945. DOI: https://doi.org/10.3390/plants12101945

Mushtaq, Z., Asghar, H. N., & Zahir, Z. A. (2021). Comparative growth analysis of okra (Abelmoschus esculentus) in the presence of PGPR and press mud in chromium contaminated soil. Chemosphere, 262, 127865. DOI: https://doi.org/10.1016/j.chemosphere.2020.127865

Mutlu, A. (2021). The effect of organic fertilizers on grain yield and some yield components of barley (Hordeum vulgare L.). Fresenius Environmental Bulletin, 29(12), 10840-10846.

Naveed, M., Mitter, B., Reichenauer, T. G., Wieczorek, K., & Sessitsch, A. (2014). Increased drought stress resilience of maize through endophytic colonization by Burkholderia phytofirmans PsJN and Enterobacter sp. FD17. Environmental and Experimental Botany, 97, 30-39. DOI: https://doi.org/10.1016/j.envexpbot.2013.09.014

Prasad, R., & Shivay, Y. S. (2020). Agronomic biofortification of plant foods with minerals, vitamins and metabolites with chemical fertilizers and liming. Journal of Plant Nutrition, 43(10), 1534-1554. DOI: https://doi.org/10.1080/01904167.2020.1738464

Radhakrishnan, R., & Lee, I.-J. (2017). Foliar treatment of Bacillus methylotrophicus KE2 reprograms endogenous functional chemicals in sesame to improve plant health. Indian journal of microbiology, 57, 409-415. DOI: https://doi.org/10.1007/s12088-017-0666-0

Santoyo, G., Urtis-Flores, C. A., Loeza-Lara, P. D., Orozco-Mosqueda, M. d. C., & Glick, B. R. (2021). Rhizosphere colonization determinants by plant growth-promoting rhizobacteria (PGPR). Biology, 10(6), 475. DOI: https://doi.org/10.3390/biology10060475

Senthilkumar, M., Amaresan, N., Sankaranarayanan, A., Senthilkumar, M., Amaresan, N., & Sankaranarayanan, A. (2021). Quantitative estimation of siderophore production by microorganisms: Springer. DOI: https://doi.org/10.1007/978-1-0716-1080-0_48

Shahwar, D., Mushtaq, Z., Mushtaq, H., Alqarawi, A. A., Park, Y., Alshahrani, T. S., & Faizan, S. (2023). Role of microbial inoculants as bio fertilizers for improving crop productivity: A review. Heliyon, 9(6). DOI: https://doi.org/10.1016/j.heliyon.2023.e16134

Sharma, S., Chandra, S., Kumar, A., Bindraban, P., Saxena, A. K., Pande, V., & Pandey, R. (2019). Foliar application of iron fortified bacteriosiderophore improves growth and grain Fe concentration in wheat and soybean. Indian journal of microbiology, 59, 344-350. DOI: https://doi.org/10.1007/s12088-019-00810-4

Sharma, S., Singh, S., Rai, A., Yadav, B., & Singh, S. (2022). Effect of Different Doses of Iron Chelate on Plant Growth and in Preventing Iron Deficiency Chlorosis in Soybean. International Journal of Environment and Climate Change, 12(11), 2989-2996. DOI: https://doi.org/10.9734/ijecc/2022/v12i111344

Smith, M., & Neilands, J. (1984). Rhizobactin, a siderophore from Rhizobium meliloti. Journal of Plant Nutrition, 7(1-5), 449-458. DOI: https://doi.org/10.1080/01904168409363211

Smith, M. J., Shoolery, J., Schwyn, B., Holden, I., & Neilands, J. (1985). Rhizobactin, a structurally novel siderophore from Rhizobium meliloti. Journal of the American Chemical Society, 107(6), 1739-1743. DOI: https://doi.org/10.1021/ja00292a047

Solouki, H., Kafi, M., Nabati, J., Ahmadi, M. J., Nezami, A., & Ahmady, R. S. (2023). Seed biopriming and plant growth-promoting bacteria improve nutrient absorption and dry matter production of fenugreek (Trigonella foenum-graecum) plants. South African Journal of Botany, 162, 296-303. DOI: https://doi.org/10.1016/j.sajb.2023.09.014

Storey, E., Boghozian, R., Little, J. L., Lowman, D. W., & Chakraborty, R. (2006). Characterization of ‘Schizokinen’; a dihydroxamate-type siderophore produced by Rhizobium leguminosarum IARI 917. Biometals, 19, 637-649. DOI: https://doi.org/10.1007/s10534-006-9001-7

Tariq, M., Tahreem, N., Zafar, M., Raza, G., Shahid, M., Zunair, M., . . . Zahra, S. T. (2024). Occurrence of diverse plant growth promoting bacteria in soybean [Glycine max (L.) Merrill] root nodules and their prospective role in enhancing crop yield. Biocatalysis and Agricultural Biotechnology, 57, 103072. DOI: https://doi.org/10.1016/j.bcab.2024.103072

Timofeeva, A. M., Galyamova, M. R., & Sedykh, S. E. (2022). Bacterial siderophores: Classification, biosynthesis, perspectives of use in agriculture. Plants, 11(22), 3065. DOI: https://doi.org/10.3390/plants11223065

Vélez-Bermúdez, I. C., & Schmidt, W. (2022). How plants recalibrate cellular iron homeostasis. Plant and Cell Physiology, 63(2), 154-162. DOI: https://doi.org/10.1093/pcp/pcab166

Vocciante, M., Grifoni, M., Fusini, D., Petruzzelli, G., & Franchi, E. (2022). The role of plant growth-promoting rhizobacteria (PGPR) in mitigating plant’s environmental stresses. Applied Sciences, 12(3), 1231. DOI: https://doi.org/10.3390/app12031231

Zahir, Z. A., Ahmad, M., Hilger, T. H., Dar, A., Malik, S. R., Abbas, G., & Rasche, F. (2018). Field evaluation of multistrain biofertilizer for improving the productivity of different mungbean genotypes. Soil & Environment, 37(1). DOI: https://doi.org/10.25252/SE/17/61488

Zhang, H., Rush, Z., Penn, Z., Dunn, K., Asmus, S., Cooke, C., . . . Morris, C. (2024). Films Floating on Water Surface: Coupled Redox Cycling of Iron Species (Fe (III)/Fe (II)) at Soil/Water and Water/Air Interfaces. Water, 16(9), 1298. DOI: https://doi.org/10.3390/w16091298

Zhang, R., Zhang, W., Kang, Y., Shi, M., Yang, X., Li, H., . . . Qin, S. (2022). Application of different foliar iron fertilizers for improving the photosynthesis and tuber quality of potato (Solanum tuberosum L.) and enhancing iron biofortification. Chemical and Biological Technologies in Agriculture, 9(1), 79. DOI: https://doi.org/10.1186/s40538-022-00346-8

Downloads

Published

2024-12-30

How to Cite

Ehsan, S., Waheed, S., Sarwar, A., Chaudhary, N., Ashraf, W., Affan, Q., … Saqib, A. I. (2024). Foliar Application of Iron Fortified Bacterio-siderophore And Rhizobium Seed Inoculation Promote Growth and Grain Fe Contents in Soybean and Chickpea. Journal of Microbiological Sciences, 3(01), 20–29. https://doi.org/10.38211/jms.2024.01.70